In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu.
View Article and Find Full Text PDFDysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer.
View Article and Find Full Text PDFCompartmentalization, as a design principle, is a prerequisite for the functioning of eukaryotic cells. Although cell mimics in the form of single vesicular compartments such as liposomes or polymersomes have been tremendously successful, investigations of the corresponding higher-order architectures, in particular bilayer-based multicompartment vesicles, have only recently gained attention. We hereby demonstrate a multicompartment cell-mimetic nanocontainer, built-up from fully synthetic membranes, which features an inner compartment equipped with a channel protein and a semi-permeable outer compartment that allows passive diffusion of small molecules.
View Article and Find Full Text PDF