Publications by authors named "Ozan Sener"

Continual learning systems will interact with humans, with each other, and with the physical world through time - and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark which enables realistic evaluation of algorithms. In this paper, we study a natural setting for continual learning on a massive scale.

View Article and Find Full Text PDF

We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains. A naive merge of the constituent datasets yields poor performance due to inconsistent taxonomies and annotation practices. We reconcile the taxonomies and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images, requiring more than 1.

View Article and Find Full Text PDF

There is a large variation in the activities that humans perform in their everyday lives. We consider modeling these composite human activities which comprises multiple basic level actions in a completely unsupervised setting. Our model learns high-level co-occurrence and temporal relations between the actions.

View Article and Find Full Text PDF