IEEE Trans Pattern Anal Mach Intell
May 2023
Continual learning systems will interact with humans, with each other, and with the physical world through time - and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark which enables realistic evaluation of algorithms. In this paper, we study a natural setting for continual learning on a massive scale.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2023
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains. A naive merge of the constituent datasets yields poor performance due to inconsistent taxonomies and annotation practices. We reconcile the taxonomies and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images, requiring more than 1.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2018
There is a large variation in the activities that humans perform in their everyday lives. We consider modeling these composite human activities which comprises multiple basic level actions in a completely unsupervised setting. Our model learns high-level co-occurrence and temporal relations between the actions.
View Article and Find Full Text PDF