Traditionally, deep learning algorithms update the network weights, whereas the network architecture is chosen manually using a process of trial and error. In this paper, we propose two novel approaches that automatically update the network structure while also learning its weights. The novelty of our approach lies in our parameterization, where the depth, or additional complexity, is encapsulated continuously in the parameter space through control parameters that add additional complexity.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2013
In many bioinformatics applications, it is important to assess and compare the performances of algorithms trained from data, to be able to draw conclusions unaffected by chance and are therefore significant. Both the design of such experiments and the analysis of the resulting data using statistical tests should be done carefully for the results to carry significance. In this paper, we first review the performance measures used in classification, the basics of experiment design and statistical tests.
View Article and Find Full Text PDF