Publications by authors named "Oyvind Overli"

The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood.

View Article and Find Full Text PDF

Some parasites manipulate their host's phenotype to enhance predation rates by the next host in the parasite's life cycle. Our understanding of this parasite-increased trophic transmission is often stymied by study-design challenges. A recurring difficulty has been obtaining uninfected hosts with a coevolutionary history with the parasites, and conducting experimental infections that mimic natural processes.

View Article and Find Full Text PDF

Chronic or repeated exposure to environmental contaminants may result in allostatic overload, a physiological situation in which the costs of coping affect long-term survival and reproductive output. Continuous measurements in Otra, the largest river in southern Norway, show the occurrence of repeated 24-48 h episodes of acidification. This work investigates the impact of repeated short acidification episodes on a unique land-locked population of normally anadromous Atlantic salmon ("Bleke").

View Article and Find Full Text PDF

Ecotoxicological effects of psychiatric drugs and drug metabolites released by the human population are of increasing environmental concern. In this study we evaluate behavioral responses to visual predator cues in wild caught three-spined stickleback (Gasterosteus aculeatus) after exposure to water-born citalopram, a widely prescribed selective serotonin reuptake inhibitor with antidepressant and anxiolytic effects. Fish were exposed to ecological relevant concentrations of citalopram (0.

View Article and Find Full Text PDF

Laboratory zebrafish are commonly infected with the intracellular, brain-infecting microsporidian parasite Pseudoloma neurophilia. Chronic P. neurophilia infections induce inflammation in meninges, brain and spinal cord, and have been suggested to affect neural functions since parasite clusters reside inside neurons.

View Article and Find Full Text PDF

Modulation of brain serotonin (5-HT) signalling is associated with parasite-induced changes in host behaviour, potentially increasing parasite transmission to predatory final hosts. Such alterations could have substantial impact on host physiology and behaviour, as 5-HT serves multiple roles in neuroendocrine regulation. These effects, however, remain insufficiently understood, as parasites have been associated with both increased and decreased serotonergic activity.

View Article and Find Full Text PDF

Research conducted on model organisms may be biased due to undetected pathogen infections. Recently, screening studies discovered high prevalence of the microsporidium Pseudoloma neurophilia in zebrafish (Danio rerio) facilities. This spore-forming unicellular parasite aggregates in brain regions associated with motor function and anxiety, and despite its high occurrence little is known about how sub-clinical infection affects behaviour.

View Article and Find Full Text PDF

Some parasite species alter the behavior of intermediate hosts to promote transmission to the next host in the parasite's life cycle. This is the case for , a brain-encysting trematode parasite that causes behavioral changes in the California killifish (). These manipulations increase predation by the parasite's final host, piscivorous marsh birds.

View Article and Find Full Text PDF

Individual stress coping style (reactive, intermediate and proactive) was determined in 3 groups of 120 pit tagged European seabass using the hypoxia avoidance test. The same three groups (no change in social composition) were then reared according to the standards recommended for this species. Then, 127 days later, individuals initially characterized as reactive, intermediate or proactive were submitted to an acute confinement stress for 30 min.

View Article and Find Full Text PDF

When mobilized from surrounding soils and binding to gills at moderately low pH, aluminum (Al) cations can adversely affect fish populations. Furthermore, acidification may lead to allostatic overload, a situation in which the costs of coping with chronic stress affects long-term survival and reproductive output and, ultimately, ecosystem health. The brain's serotonergic system plays a key role in neuroendocrine stress responses and allostatic processes.

View Article and Find Full Text PDF

In fish, as well as in other vertebrates, contrasting suites of physiological and behavioral traits, or coping styles, are often shown in response to stressors. However, the magnitude of the response (i.e.

View Article and Find Full Text PDF

As part of the European Conference on Behavioral Biology 2018, we organized a symposium entitled, "" The aims of this symposium were to address current research in the personality field, spanning both behavioral ecology and psychology, to highlight the future directions for this research, and to consider whether differential approaches to studying behavior contribute something new to the understanding of animal behavior. In this paper, we discuss the study of endocrinology and ontogeny in understanding how behavioral variation is generated and maintained, despite selection pressures assumed to reduce this variation. We consider the potential mechanisms that could link certain traits to fitness outcomes through longevity and cognition.

View Article and Find Full Text PDF

Individuals in a fish population differ in key life-history traits such as growth rate and body size. This raises the question of whether such traits cluster along a fast-slow growth continuum according to a pace-of-life syndrome (POLS). Fish species like salmonids may develop a bimodal size distribution, providing an opportunity to study the relationships between individual growth and behavioural responsiveness.

View Article and Find Full Text PDF

The essential amino acid L-tryptophan (Trp) is the precursor of the monoaminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Numerous studies have shown that elevated dietary Trp has a suppressive effect on aggressive behavior and post-stress plasma cortisol concentrations in vertebrates, including teleosts. These effects are believed to be mediated by the brain serotonergic system, even though all mechanisms involved are not well understood.

View Article and Find Full Text PDF

Recent theories in evolutionary medicine have suggested that behavioural outputs associated with depression-like states (DLS) could be an adaptation to unpredictable and precarious situations. In animal models, DLS are often linked to diverse and unpredictable stressors or adverse experiences. Theoretically, there are a range of potential fitness benefits associated with behavioural inhibition (typical to DLS), as opposed to more active/aggressive responses to adverse or uncontrollable events.

View Article and Find Full Text PDF

Individual variation in the ability to modify previously learned behavior is an important dimension of trait correlations referred to as coping styles, behavioral syndromes or personality. These trait clusters have been shaped by natural selection, and underlying control mechanisms are often conserved throughout vertebrate evolution. In teleost fishes, behavioral flexibility and coping style have been studied in the high (HR) and low-responsive (LR) rainbow trout lines.

View Article and Find Full Text PDF

Individual variation in behavior and physiological traits in a wide variety of animals has been the focus of numerous studies in recent years. In this context, early life experiences shape responses that individuals have to subsequent environments, i.e.

View Article and Find Full Text PDF

Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT.

View Article and Find Full Text PDF

Stress and elevated cortisol levels are associated with pathological heart growth and cardiovascular disease in humans and other mammals. We recently established a link between heritable variation in post-stress cortisol production and cardiac growth in salmonid fish too. A conserved stimulatory effect of the otherwise catabolic steroid hormone cortisol is probably implied, but has to date not been established experimentally.

View Article and Find Full Text PDF

Individually consistent behavioral and physiological responses to stressful situations (often referred to as coping styles) has been reported in many animal species. Differences in hypothalamic-pituitary axis reactivity characterize individuals, and it has been proposed that the glucocorticoid (gr) and mineralocorticoid (mr) receptors are fundamental in regulating coping styles. We sorted individuals into reactive and proactive coping styles by collapsing behavioral outputs from net restraint and confinement stress tests in a principal component analysis.

View Article and Find Full Text PDF

Despite the use of fish models to study human mental disorders and dysfunctions, knowledge of regional telencephalic responses in non-mammalian vertebrates expressing alternative stress coping styles is poor. As perception of salient stimuli associated with stress coping in mammals is mainly under forebrain limbic control, we tested region-specific forebrain neural (i.e.

View Article and Find Full Text PDF

Ongoing rapid domestication of Atlantic salmon implies that individuals are subjected to evolutionarily novel stressors encountered under conditions of artificial rearing, requiring new levels and directions of flexibility in physiological and behavioural coping mechanisms. Phenotypic plasticity to environmental changes is particularly evident at early life stages. We investigated the performance of salmon, previously subjected to an unpredictable chronic stress (UCS) treatment at an early age (10 month old parr), over several months and life stages.

View Article and Find Full Text PDF

Individual variation in how animals react to stress and environmental change has become a central topic in a wide range of biological disciplines, from evolutionary ecology to biomedicine. Such variation manifests phenotypically as correlated trait-clusters (referred to as coping styles, behavioral syndromes, shyness-boldness, or personality traits). Thresholds for switching from active coping (fight-flight) to inhibition and passive behavior when exposed to stress depend on experience and genetic factors.

View Article and Find Full Text PDF

In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning.

View Article and Find Full Text PDF

Signalling systems activated under stress are highly conserved, suggesting adaptive effects of their function. Pathologies arising from continued activation of such systems may represent a mismatch between evolutionary programming and current environments. Here, we use Atlantic salmon (Salmo salar) in aquaculture as a model to explore this stance of evolutionary-based medicine, for which empirical evidence has been lacking.

View Article and Find Full Text PDF