Regeneration of pathological wounds, such as diabetic ulcers, poses a significant challenge in clinical settings, despite the widespread use of drugs. To overcome clinical side effects and complications, drug-free therapeutics need to be developed to promote angiogenesis while overcoming inflammation to restore regenerative events. This study presents a novel bioactive nanozyme based on cobalt-doped nanoglass (namely, CoNZ), which exhibits high enzymatic/catalytic activity while releasing therapeutic ions.
View Article and Find Full Text PDFCritical limb ischemia (CLI) is a serious form of peripheral arterial disease that involves severe blockage of blood flow in lower extremities, often leading to foot necrosis and limb loss. Lack of blood flow and high pro-inflammation with overproduced reactive oxygen species (ROS) in CLI aggravate the degenerative events. Among other therapies, cell delivery is considered potential for restoring regenerative capacity, and preservation of cell survival under high oxidative stress has been challenging and prerequisite to harness cellular functions.
View Article and Find Full Text PDFCell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.
View Article and Find Full Text PDFOsteoporosis causes severe bone damage, posing potential risks to human health, patient quality of life, and society. Calcium has been widely shown to enhance bone density and prevent osteoporosis-related bone fractures. Here, we focused on calcium salt formulations containing natural substances and their possible therapeutic effects on osteoporosis.
View Article and Find Full Text PDF