Enhanced warm, salty subarctic inflows drive high-latitude atlantification, which weakens oceanic stratification, amplifies heat fluxes, and reduces sea ice. In this work, we show that the atmospheric Arctic Dipole (AD) associated with anticyclonic winds over North America and cyclonic winds over Eurasia modulates inflows from the North Atlantic across the Nordic Seas. The alternating AD phases create a "switchgear mechanism.
View Article and Find Full Text PDFEcological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased.
View Article and Find Full Text PDFNorwegian Spring Spawning herring (NSSH) Clupea harengus L. spawn on coastal banks along the west coast of Norway. The larvae are generally transported northward in the Norwegian Coastal Current (NCC) with many individuals utilizing nursery grounds in the Barents Sea.
View Article and Find Full Text PDFThe two-branched inflow of warm and saline Atlantic Water to the Arctic is the major contributor of oceanic heat to the Arctic climate system. However, while the Atlantic Water entering the Arctic through the Fram Strait retains a large part of its heat as it flows along the Arctic continental slope, the branch flowing through the shallow Barents Sea releases a substantial amount of heat to the atmosphere. Hence, the pathway of the Atlantic Water into the Arctic to a large degree determines the short term fate of its heat.
View Article and Find Full Text PDF