The importance of catalysts today as workhorses in most modern industrial fields cannot be downplayed. As a result, rational design and engineering of targeted catalysts have emerged as key objectives and are dependent on in-depth understanding of complex catalytic dynamics. Synchrotron radiation (SR) light sources with rich advanced experimental methods are being recognized as a comprehensive characterization platform, which can draw a full picture on such multiparameter-involved catalysis under actual working conditions.
View Article and Find Full Text PDFBroadly, the oxygen evolution reaction (OER) has been deeply understood as a significant part of energy conversion and storage. Nevertheless, the anions in the OER catalysts have been neglected for various reasons such as inactive sites, dissolution, and oxidation, amongst others. Herein, we applied a model catalyst s-Ni(OH) to track the anionic behavior in the catalyst during the electrochemical process to fill this gap.
View Article and Find Full Text PDFDespite recent advances in controlling ice formation and growth, it remains a challenge to design anti-icing materials in various fields from atmospheric to biological cryopreservation. Herein, tungsten diselenide (WSe)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) are synthesized through one-step solvothermal route. The WSe-PVP NPs show synergetic ice regulation ability both in the freezing and thawing processes.
View Article and Find Full Text PDFMolybdenum disulfide (MoS) has attracted much attention as a promising alternative to Pt-based catalysts for highly efficient hydrogen generation. However, it suffers sluggish kinetics for driving the hydrogen evolution reaction (HER) process because of inert basal planes, especially in alkaline solution. Here, we show a combination of heteroatom doping and phase transformation strategies to engineer the in-plane structure of MoS, that trigger their catalytic activities.
View Article and Find Full Text PDFTransition metal dichalogenides (TMDCs) with unique layered structures hold promising potential as transducers for photothermal therapy. However, the low photothermal conversion efficiency and poor stability in some cases limit their practical applications. Herein, we demonstrate the fabrication of ultrathin homogeneous hybridized TMDC nanosheets and their use for highly efficient photothermal tumor ablation.
View Article and Find Full Text PDFDespite the fact that two-dimensional layered magnetic materials hold immense potential applications in the field of spintronic devices, tunable magnetism is still a challenge due to the lack of controllable synthesis. Herein, high-quality single crystals MPS₃ (M= Mn, Fe) of millimeter size were synthesized through the chemical vapor transport method. After systemic structural characterizations, magnetic properties were studied on the bulk MPS₃ layers through experiments, along with first principle theoretical calculations.
View Article and Find Full Text PDF