In parallel with evolutionary developments, the Hsp90 molecular chaperone system shifted from a simple prokaryotic factor into an expansive network that includes a variety of cochaperones. We have taken high-throughput genomic and proteomic approaches to better understand the abundant yeast p23 cochaperone Sba1. Our work revealed an unexpected p23 network that displayed considerable independence from known Hsp90 clients.
View Article and Find Full Text PDFp23 is a heat shock protein 90 (Hsp90) cochaperone located in both the cytoplasm and nucleus that stabilizes unliganded steroid receptors, controls the catalytic activity of certain kinases, regulates protein-DNA dynamics, and is upregulated in several cancers. We had previously shown that p23-overexpressing MCF-7 cells (MCF-7+p23) exhibit increased invasion without affecting the estrogen-dependent proliferative response, which suggests that p23 differentially regulates genes controlling processes linked to breast tumor metastasis. To gain a comprehensive view of the effects of p23 on estrogen receptor (ER)-dependent and -independent gene expression, we profiled mRNA expression from control versus MCF-7+p23 cells in the absence and presence of estrogen.
View Article and Find Full Text PDFKinase inhibitors are developed for the treatment of various diseases. Because multiple factors control disease progression and kinases are part of large nonlinear networks, it is complicated to predict which kinase is the best to target. We substantiate the need for Systems Biology to assist in dealing with this complexity.
View Article and Find Full Text PDFThe cochaperone p23 plays an important role in estrogen receptor alpha (ER) signal transduction. In this study, we investigated how p23 regulates ER target gene activation and affects tumor growth and progression. Remarkably, we found that changes in the expression of p23 differentially affected the activation of ER target genes in a manner dependent upon the type of DNA regulatory element.
View Article and Find Full Text PDFMembers of the YERO57c/YJGFc/UK114 protein family have been identified in bacteria and eukaryotes. The budding yeast Saccharomyces cerevisiae contains two different proteins of this family, Hmf1p and Mmf1p. We have previously shown that Mmf1p is a mitochondrial protein functionally related to its human homologue and able to influence the maintenance of mitochondrial DNA.
View Article and Find Full Text PDFp23 is an Hsp90-associated protein that regulates signal transduction by the estrogen receptor alpha (ER); however, the mechanism through which p23 governs ER function remains enigmatic. To obtain a collection of p23 molecules with distinct effects on ER signaling, we screened in yeast a series of random mutations as well as specific sequence alterations based on the p23 crystal structure and further analyzed these mutations for their effect on p23-Hsp90 association in vitro and in vivo. We found that the ability of the p23 mutants to decrease or increase ER signal transduction correlated with their association with Hsp90.
View Article and Find Full Text PDFA novel family of small proteins, termed p14.5 or YERO57c/YJGFc, has been identified. Independent studies indicate that p14.
View Article and Find Full Text PDFA novel protein family (p14.5, or YERO57c/YJGFc) highly conserved throughout evolution has recently been identified. The biological role of these proteins is not yet well characterized.
View Article and Find Full Text PDF