Tetradentate Schiff bases (H(2)L(i)), derivatives of salicylic aldehyde (H(2)L(1), H(2)L(2)) or o-vanillin (H(2)L(3), H(2)L(4)) with ethylenediamine or o-phenylenediamine as a bridge, and their zinc complexes were studied experimentally and theoretically in view of their possible application as emitters in organic light emitting diodes (OLEDs). The composition of thin films of the complexes was analyzed using a combination of different experimental and molecular modeling techniques taking into account changes in the Gibbs free energy of dehydration and dimerization reactions. The absorption spectra of the initial Schiff bases were investigated in methanol solutions, while the absorption spectra of their zinc complexes were investigated in thin films.
View Article and Find Full Text PDFTwo types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate.
View Article and Find Full Text PDF