The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.
View Article and Find Full Text PDFAdaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change.
View Article and Find Full Text PDFThe therapeutic use of noradrenergic drugs makes the evaluation of their effects on cognition of high priority. Norepinephrine (NE) is an important neuromodulator for a variety of cognitive processes and may importantly contribute to sleep-mediated memory consolidation. The NE transmission fluctuates with the behavioral and/or brain state and influences associated neural activity.
View Article and Find Full Text PDFThe neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD.
View Article and Find Full Text PDFThe locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets.
View Article and Find Full Text PDFDescriptions of the nuclear parcellation of the locus coeruleus complex have been provided in approximately 80 mammal species spanning the phylogenetic breadth of this class. Within the mammalian rostral hindbrain, noradrenergic neurons (revealed with tyrosine hydroxylase and dopamine-ß-hydroxylase immunohistochemistry) have been observed within the periventricular grey matter (A4 and A6 nuclei) and parvicellular reticular nucleus (A5 and A7 nuclei), with the one exception to date being the tree pangolin, where no A4/A6 neurons are observed. The alphanumeric nomenclature system, developed in laboratory rodent brains, has been adapted to cover the variation observed across species.
View Article and Find Full Text PDFThe brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Coupling between LC spiking and the depolarizing phase of slow (1-2 Hz) waves in PFC field potentials during sleep and anesthesia suggests that LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interactions in the opposing (top-down) direction, but prior work has only studied prefrontal control over LC activity using electrical or optogenetic stimulation.
View Article and Find Full Text PDFAn alerting sound elicits the Acoustic Startle Response (ASR) that is dependent on the sound volume and organisms' state, which is regulated by neuromodulatory centers. The locus coeruleus (LC) neurons respond to salient stimuli and noradrenaline release affects sensory processing, including auditory. The LC hyperactivity is detrimental for sensorimotor gating.
View Article and Find Full Text PDFCortical slow rhythmic activity, a hallmark of deep sleep, is observed under urethane anesthesia. Synchronized fluctuations of the membrane excitability of a large neuronal population are reflected in the extracellular Local Field Potential (LFP), as high-amplitude slow (∼1 Hz) oscillations (SO). The SO-phase indicates the presence (Up) or absence (Down) of neuronal spiking.
View Article and Find Full Text PDFCognition fluctuates over relatively faster and slower timescales. This is enabled by dynamic interactions among cortical neurons over similarly diverse temporal and spatial scales. Fast and slow cognitive processes, such as reorienting to surprising stimuli or using experience to develop a behavioral strategy, are also sensitive to neuromodulation by the diffusely-projecting brainstem noradrenergic nucleus, Locus Coeruleus.
View Article and Find Full Text PDFForming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions.
View Article and Find Full Text PDFDiffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics within LC.
View Article and Find Full Text PDFSpatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and PFC and may coordinate the information flow within the HPC-PFC pathway.
View Article and Find Full Text PDFThe locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored.
View Article and Find Full Text PDFExperience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation.
View Article and Find Full Text PDFNeuronal responses to sensory stimuli are not only driven by feedforward sensory pathways but also depend upon intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation. To understand how these factors together regulate cortical dynamics, we recorded simultaneously spontaneous and somatosensory-evoked multiunit activity from primary somatosensory cortex and from the locus coeruleus (LC) (the neuromodulatory nucleus releasing norepinephrine) in urethane-anesthetized rats. We found that bursts of ipsilateral-LC firing preceded by few tens of milliseconds increases of cortical excitability, and that the 1- to 10-Hz rhythmicity of LC discharge appeared to increase the power of delta-band (1-4 Hz) cortical synchronization.
View Article and Find Full Text PDFPsychopharmacology (Berl)
October 2015
The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC.
View Article and Find Full Text PDFA Gd(3+) based paramagnetic dextran conjugate has been developed, which enables the tracking of neuroanatomical connectivity in the brain by both MR and optical imaging. Cell studies and subsequent in vivo experiments in rodents demonstrate efficient internalisation and transport properties of the new tracer molecule.
View Article and Find Full Text PDFWe examined the applicability of manganese-enhanced MRI (MEMRI) to the in vivo tracing of diffuse neuromodulatory projections by means of simultaneous iontophoretic injections of an extremely low, non-toxic concentration of MnCl(2) (10mM) and fluorescent dextran in the locus coeruleus (LC) in the rat. We validated the use of the iontophoretic injection by reproducing previously reported results from pressure injections of MnCl(2) in primary somatosensory cortex. Twenty fourhours after injection in LC, Mn(2+) labeling was detected in major cortical and subcortical targets of LC projections including predominantly ipsilateral primary motor and somatosensory cortices, hippocampus and amygdala.
View Article and Find Full Text PDFNonrapid eye movement (NREM) sleep is characterized by periodic changes in cortical excitability that are reflected in the electroencephalography (EEG) as high-amplitude slow oscillations, indicative of cortical Up/Down states. These slow oscillations are thought to be involved in NREM sleep-dependent memory consolidation. Although the locus coeruleus (LC) noradrenergic system is known to play a role in off-line memory consolidation (that may occur during NREM sleep), cortico-coerulear interactions during NREM sleep have not yet been studied in detail.
View Article and Find Full Text PDFManganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) offers the possibility to generate longitudinal maps of brain activity in unrestrained and behaving animals. However, Mn(2+) is a metabolic toxin and a competitive inhibitor for Ca(2+), and therefore, a yet unsolved question in MEMRI studies is whether the concentrations of metal ion used may alter brain physiology. In the present work we have investigated the behavioral, electrophysiological and histopathological consequences of MnCl(2) administration at concentrations and dosage protocols regularly used in MEMRI.
View Article and Find Full Text PDFThe beneficial effect of sleep on memory has been well-established by extensive research on humans, but the neurophysiological mechanisms remain a matter of speculation. This study addresses the hypothesis that the fast oscillations known as ripples recorded in the CA1 region of the hippocampus during slow wave sleep (SWS) may provide a physiological substrate for long term memory consolidation. We trained rats in a spatial discrimination task to retrieve palatable reward in three fixed locations.
View Article and Find Full Text PDFThe mechanisms underlying off-line consolidation of memory during sleep are elusive. Learning of hippocampus-dependent tasks increases neocortical slow oscillation synchrony, and thalamocortical spindle and hippocampal ripple activity during subsequent non-rapid eye movement sleep. Slow oscillations representing an oscillation between global neocortical states of increased (up-state) and decreased (down-state) neuronal firing temporally group thalamic spindle and hippocampal ripple activity, which both occur preferentially during slow oscillation up-states.
View Article and Find Full Text PDF