Publications by authors named "Oxana Baranova"

Article Synopsis
  • * AANAT, the key enzyme for melatonin production, shows significantly reduced expression in HD patients' pineal glands and striatums, and in R6/2 mice, indicating disrupted melatonin biosynthesis.
  • * Despite increased AANAT mRNA in some tissues, the protein is sequestered in mutant huntingtin aggregates, leading to lower melatonin levels and suggesting an ineffective feedback mechanism.
View Article and Find Full Text PDF

Mutant huntingtin (mHTT), the causative protein in Huntington's disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space.

View Article and Find Full Text PDF

Neuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT signal-transduction pathway inhibiting stress-mediated cytochrome release and caspase activation.

View Article and Find Full Text PDF

Background: Functional and structural properties of mitochondria are highly tissue and cell dependent, but isolation of highly purified human neuronal mitochondria is not currently available.

New Method: We developed and validated a procedure to isolate purified neuronal mitochondria from brain tissue. The method combines Percoll gradient centrifugation to obtain synaptosomal fraction with nitrogen cavitation mediated synaptosome disruption and extraction of mitochondria using anti mitochondrial outer membrane protein antibodies conjugated to magnetic beads.

View Article and Find Full Text PDF

Mitochondrial dysfunction is associated with neuronal loss in Huntington's disease (HD), a neurodegenerative disease caused by an abnormal polyglutamine expansion in huntingtin (Htt). However, the mechanisms linking mutant Htt and mitochondrial dysfunction in HD remain unknown. We identify an interaction between mutant Htt and the TIM23 mitochondrial protein import complex.

View Article and Find Full Text PDF

The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data.

View Article and Find Full Text PDF

One of the hypotheses for the development of familial amyotrophic lateral sclerosis (ALS) is that mutations in the superoxide dismutase 1 enzyme lead to aberrant properties of the copper within the active site of the enzyme which then causes increased oxidative damage. The lipophilic metal chelators DP-109 and DP-460 which chelate calcium, copper, and zinc were tested in the G93A-transgenic ALS mouse model. Both compounds significantly extended survival, DP-109 (5 mg/kg/day) by 10%, DP-460 (10 mg/kg/day) by 9%.

View Article and Find Full Text PDF

In the present study, we show a biphasic activation of hypoxia inducible factor 1alpha (HIF-1) after stroke that lasts for up to 10 d, suggesting the involvement of the HIF pathway in several aspects of the pathophysiology of cerebral ischemia. We provide evidence that HIF-1-mediated responses have an overall beneficial role in the ischemic brain as indicated by increased tissue damage and reduced survival rate of mice with neuron-specific knockdown of HIF-1alpha that were subjected to transient focal cerebral ischemia. In addition, we demonstrated that drugs known to activate HIF-1 in cultured cells as well as in vivo had neuroprotective properties in this model of cerebral ischemia.

View Article and Find Full Text PDF

Recent advances in cancer cell biology have focused on histone deacetylase inhibitors (HDACi's) because they target pathways critical to the development and progression of disease. In particular, HDACi's can induce expression of epigenetically silenced genes that promote growth arrest, differentiation and cell death. In glioma cells, one such repressed gene is the tetraspanin CD81, which regulates cytostasis in various cell lines and in astrocytes, the major cellular component of gliomas.

View Article and Find Full Text PDF

In the ischemic or hypoxic brain, astrocytes appear to be one of the main sources of erythropoietin (EPO). In this study, we investigated the differential contribution of hypoxia inducible factor (HIF) isoforms to the regulation of hypoxic EPO expression in cultured astrocytes. In addition, using an in vitro model of oxygen-glucose deprivation (OGD), we studied the role of HIF-1alpha and HIF-2alpha in the generation of paracrine protective signals by astrocytes that modulate the survival of neurons exposed to OGD.

View Article and Find Full Text PDF