Publications by authors named "Owsianka A"

Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415.

View Article and Find Full Text PDF

HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions-such as the epitopes of broadly neutralizing antibodies (bNAbs)-and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2.

View Article and Find Full Text PDF

Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV.

View Article and Find Full Text PDF

Mimicry of the binding interface of antibody-antigen interactions using peptide-based modulators (i.e., epitope mimics) has promising applications for vaccine design.

View Article and Find Full Text PDF

The humoral immune system responds to chronic hepatitis C virus (HCV) infection by producing neutralising antibodies (nAb). In this study we generated three HCV pseudoparticles in which E1E2 glycoprotein sequence was targeted by the host humoral immune system. We used patient derived virus free Fabs (VF-Fabs) obtained from HCV genotype 1a (n = 3), genotype 1b (n = 7) and genotype 3a (n = 1) for neutralisation of HCVpp produced in this study both individually and in combination.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig)-like β-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a β-strand of this Ig-like domain forms an α-helix in complex with the anti-E2 antibody DAO5, demonstrating an inside-out flip of hydrophobic residues and a secondary structure change in the composite CD81 binding site.

View Article and Find Full Text PDF

Background: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions.

View Article and Find Full Text PDF

Unlabelled: Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system.

View Article and Find Full Text PDF

Unlabelled: The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1.

View Article and Find Full Text PDF

The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes.

View Article and Find Full Text PDF

Despite extensive research, many details about the structure and functions of hepatitis C virus (HCV) glycoproteins E1 and E2 are not fully understood, and their crystal structure remains to be determined. We applied linker-scanning mutagenesis to generate a panel of 34 mutants, each containing an insertion of 5 aa at a random position within the E1E2 sequence. The mutated glycoproteins were analysed by using a range of assays to identify regions critical for maintaining protein conformation, E1E2 complex assembly, CD81 receptor binding, membrane fusion and infectivity.

View Article and Find Full Text PDF

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope.

View Article and Find Full Text PDF

Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33.

View Article and Find Full Text PDF

The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity.

View Article and Find Full Text PDF

Unlabelled: The hepatitis C virus (HCV) p7 protein plays a critical role during particle formation in cell culture and is required for virus replication in chimpanzees. The discovery that it displayed cation channel activity in vitro led to its classification within the "viroporin" family of virus-coded ion channel proteins, which includes the influenza A virus (IAV) M2 protein. Like M2, p7 was proposed as a potential target for much needed new HCV therapies, and this was supported by our finding that the M2 inhibitor, amantadine, blocked its activity in vitro.

View Article and Find Full Text PDF

Background & Aims: Hepatitis C virus (HCV) is a leading cause of chronic hepatitis worldwide. Viral attachment and entry, representing the first steps of virus-host cell interactions, are major targets of adaptive host cell defenses. The mechanisms of antibody-mediated neutralization by host neutralizing responses in HCV infection are only poorly understood.

View Article and Find Full Text PDF

The humoral response to hepatitis C virus (HCV) may contribute to controlling infection. We previously isolated human monoclonal antibodies to conformational epitopes on the HCV E2 glycoprotein. Here, we report on their ability to inhibit infection by retroviral pseudoparticles incorporating a panel of full-length E1E2 clones representing the full spectrum of genotypes 1-6.

View Article and Find Full Text PDF

Identification of anti-hepatitis C virus (anti-HCV) human antibody clones with broad neutralizing activity is important for a better understanding of the interplay between the virus and host and for the design of an effective passive immunotherapy and an effective vaccine. We report the identification of a human monoclonal Fab (e137) able to bind the HCV E2 glycoprotein of all HCV genotypes but genotype 5. The results of antibody competition assays and testing the reactivity to alanine mutant E2 proteins confirmed that the e137 epitope includes residues (T416, W420, W529, G530, and D535) highly conserved across all HCV genotypes.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major cause of liver disease worldwide and there is a pressing need for the development of a preventative vaccine as well as new treatments. It was recently demonstrated that the mouse monoclonal antibody (mAb) AP33 potently neutralizes infectivity of HCV pseudoparticles (HCVpp) carrying E1E2 envelopes representative of all of the major genotypes of HCV. This study determined the prevalence of human serum antibodies reactive to the region of HCV E2 recognized by AP33.

View Article and Find Full Text PDF

Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is a major cause of severe chronic liver disease including cirrhosis and hepatocellular carcinoma. HCV has been classified into six major genotypes that exhibit extensive genetic variability, particularly in the envelope glycoproteins E1 and E2. Knowledge of genotypic and quasispecies variation on viral glycoprotein properties is important in understanding the structure-function relationship of the proteins.

View Article and Find Full Text PDF

Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2.

View Article and Find Full Text PDF

The mouse monoclonal antibody (MAb) AP33, recognizing a 12 amino acid linear epitope in the hepatitis C virus (HCV) E2 glycoprotein, potently neutralizes retroviral pseudoparticles (HCVpp) carrying genetically diverse HCV envelope glycoproteins. Consequently, this antibody and its epitope are highly relevant to vaccine design and immunotherapeutic development. The rational design of immunogens capable of inducing antibodies that target the AP33 epitope will benefit from a better understanding of this region.

View Article and Find Full Text PDF