Self-oscillation is a phenomenon where an object sustains periodic motion upon non-periodic stimulus. It occurs commonly in nature, a few examples being heartbeat, sea waves and fluttering of leaves. Stimuli-responsive materials allow creating synthetic self-oscillators fuelled by different forms of energy, e.
View Article and Find Full Text PDFBeyond their colorful appearances and versatile geometries, flowers can self-shape-morph by adapting to environmental changes. Such responses are often regulated by a delicate interplay between different stimuli such as temperature, light, and humidity, giving rise to the beauty and complexity of the plant kingdom. Nature inspires scientists to realize artificial systems that mimic their natural counterparts in function, flexibility, and adaptation.
View Article and Find Full Text PDFThe iris, found in many animal species, is a biological tissue that can change the aperture (pupil) size to regulate light transmission into the eye in response to varying illumination conditions. The self-regulation of the eye lies behind its autofocusing ability and large dynamic range, rendering it the ultimate "imaging device" and a continuous source of inspiration in science. In optical imaging devices, adjustable apertures play a vital role as they control the light exposure, the depth of field, and optical aberrations of the systems.
View Article and Find Full Text PDFLiquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge.
View Article and Find Full Text PDFThe sophistication, complexity and intelligence of biological systems is a continuous source of inspiration for mankind. Mimicking the natural intelligence to devise tiny systems that are capable of self-regulated, autonomous action to, for example, distinguish different targets, remains among the grand challenges in biomimetic micro-robotics. Herein, we demonstrate an autonomous soft device, a light-driven flytrap, that uses optical feedback to trigger photomechanical actuation.
View Article and Find Full Text PDFManganese oxide (MnO2 ) based micromotors exhibiting a dual effect, that is, catalytic degradation and adsorptive bubble separation, were employed for water remediation. The dual effect of MnO2 microparticles led to a greater than 90 % of decolorization of non-biodegradable organic dyes in just 1 h, without the need for external agitation or bubble generation. These findings suggest high potential of MnO2 micromotors for decontamination of organic pollutants from wastewaters or natural water reserves.
View Article and Find Full Text PDFChemically powered micromotors represent an exciting research area in nanotechnology. Such artificial devices are typically driven by catalytic bubble formation, taking place at the solid-liquid interface. Platinum has been most frequently used for the fabrication of different micromotors due to its superior catalytic efficiency.
View Article and Find Full Text PDF