Publications by authors named "Owen Woodward"

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to kidney failure. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single-nucleus multimodal atlas of an orthologous mouse PKD model at early, mid, and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes.

View Article and Find Full Text PDF

The selfish brain mechanism proposes that in some patients with impaired cerebral blood flow (CBF) or cerebrovascular function, hypertension may develop as a compensatory mechanism that aims to maintain CBF by increasing systemic blood pressure through an increase in cardiovascular sympathetic tone. The amplitude of low frequency fluctuations (ALFF) in the resting state blood oxygenation level dependent (BOLD) functional MRI signal has been previously posited as an index of cerebrovascular reactivity. We investigated whether regional fractional ALFF (fALFF) differs between 2054 hypertensives and 1724 normotensives using data from the UK Biobank dataset.

View Article and Find Full Text PDF

MRI offers techniques for non-invasively measuring a range of aspects of brain tissue function. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used to assess neural activity, based on the brain's haemodynamic response, while arterial spin labelling (ASL) MRI is a non-invasive method of quantitatively mapping cerebral perfusion. Both techniques can be applied to measure cerebrovascular reactivity (CVR), an important marker of the health of the cerebrovascular system.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, and , but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the gene conditionally.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end stage renal disease characterized by progressive expansion of kidney cysts. To better understand the cell types and states driving ADPKD progression, we analyze eight ADPKD and five healthy human kidney samples, generating single cell multiomic atlas consisting of ~100,000 single nucleus transcriptomes and ~50,000 single nucleus epigenomes. Activation of proinflammatory, profibrotic signaling pathways are driven by proximal tubular cells with a failed repair transcriptomic signature, proinflammatory fibroblasts and collecting duct cells.

View Article and Find Full Text PDF

Background: Filipino Americans (FAs) are the third-largest Asian American subgroup in the United States (US). Some studies showed that FAs experience more cardiometabolic diseases (CMDs) than other Asian subgroups and non-Hispanic Whites. The increased prevalence of CMD observed in FAs could be due to genetics and social/dietary lifestyles.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how mechanical forces influence kidney cell fluid transport and morphology, highlighting their unclear role in kidney diseases.
  • This research uses a microfluidic platform to demonstrate that kidney epithelial cells can generate hydraulic pressure gradients, affecting fluid movement and pressure distribution.
  • Findings indicate that normal kidney cells show a fluid flow from top to bottom with higher pressure at the bottom, while cells affected by Autosomal Dominant Polycystic Kidney Disease exhibit a reversed flow pattern, revealing the significance of hydraulic pressure in kidney function and disease.
View Article and Find Full Text PDF
Article Synopsis
  • * The study identified 100 significant CpG sites that account for 11.6% of serum urate variance, particularly noting five CpGs associated with SLC2A9, a major gene influencing serum urate levels.
  • * Additionally, some of these CpGs also appear to mediate effects of genetic variants related to serum urate and are linked to metabolic syndrome, suggesting a potential blood DNA methylation signature for assessing cardiometabolic risk factors.
View Article and Find Full Text PDF

Tetracycline-inducible gene expression systems have been used successfully to study gene function and renal epithelial models but the effects of the common inducing agent, doxycycline (DOX), on gene expression are not well appreciated. Here, we evaluated the DOX effects on the transcriptome of a widely used renal epithelial cell model, mIMCD3 cells, to establish a reference. Cells were grown on permeable filter supports in the absence and presence of DOX (3 or 6 days), and genome-wide transcriptome profiles were assessed using RNA-Seq.

View Article and Find Full Text PDF

Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases.

View Article and Find Full Text PDF

Context: Cucumber ( Linn. [Cucurbitaceae]) is widely known for its purgative, antidiabetic, antioxidant, and anticancer therapeutic potential. However, its effect on gastrointestinal (GI) disease is unrecognised.

View Article and Find Full Text PDF

TMEM16A (Transmembrane protein 16A or Anoctamin1) is a calcium-activated chloride channel. (CaCC),that exerts critical roles in epithelial secretion. However, its localization, function, and regulation in intestinal chloride (Cl) secretion remain obscure.

View Article and Find Full Text PDF

Background: High body mass index (BMI) is strongly associated with hyperuricaemia. It is unknown whether overweight and obesity influences serum urate primarily through increased urate production or reduced renal clearance of uric acid. The aim of this study was to determine the influence of BMI on the response to inosine, a purine nucleoside that functions as an intermediate in the purine salvage and degradation pathways.

View Article and Find Full Text PDF

Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective.

View Article and Find Full Text PDF

Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation.

View Article and Find Full Text PDF

The pathophysiological nature of the common ABCG2 gout and hyperuricemia associated variant Q141K (rs2231142) remains undefined. Here, we use a human interventional cohort study (ACTRN12615001302549) to understand the physiological role of ABCG2 and find that participants with the Q141K ABCG2 variant display elevated serum urate, unaltered FEUA, and significant evidence of reduced extra-renal urate excretion. We explore mechanisms by generating a mouse model of the orthologous Q140K Abcg2 variant and find male mice have significant hyperuricemia and metabolic alterations, but only subtle alterations of renal urate excretion and ABCG2 abundance.

View Article and Find Full Text PDF

Local and systemic factors that influence renal structure and function in aging are not well understood. The secretory protein C1q/TNF-related protein 1 (CTRP1) regulates systemic metabolism and cardiovascular function. We provide evidence here that CTRP1 also modulates renal physiology in an age- and sex-dependent manner.

View Article and Find Full Text PDF

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy.

View Article and Find Full Text PDF

Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals.

View Article and Find Full Text PDF

Novel technologies, new understanding of the basement membrane composition, and better comprehension of the embryonic development of the mammalian kidney have led to explosive growth in the use of three-dimensional in vitro models to study a range of human disease pathologies (Clevers H. Cell 165: 1586-1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647-664, 2014).

View Article and Find Full Text PDF

A 76-year-old man was admitted to hospital with a right-sided fractured neck of femur requiring repair via a cemented hemiarthroplasty. Intraoperatively he received 10 mg of intravenous morphine. Post-operatively he received a short course of low-dose oral opioids and subsequently developed myoclonic jerks and hyperalgesia.

View Article and Find Full Text PDF

The human propensity for high levels of serum uric acid (SUA) is a trait that has defied explanation. Is it beneficial? Is it pathogenic? Its role in the human diseases like gout and kidney stones was discovered over a century ago [Richette P, Bardin T. Lancet 375: 318-328, 2010; Rivard C, Thomas J, Lanaspa MA, Johnson RJ.

View Article and Find Full Text PDF

Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ.

View Article and Find Full Text PDF