spp. are commonly associated with the root rot complex of soybean (). Previous surveys identified six common species from Manitoba, including , , , , , and .
View Article and Find Full Text PDFSoybean cyst nematode (SCN, , Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.
View Article and Find Full Text PDFPlant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P.
View Article and Find Full Text PDFCrop yield prediction which provides critical information for management decision-making is of significant importance in precision agriculture. Traditional manual inspection and calculation are often laborious and time-consuming. For yield prediction using high-resolution images, existing methods, e.
View Article and Find Full Text PDFCytochrome P450 monooxygenases (P450) participate in the catalytic conversion of biological compounds in a plethora of metabolic pathways, such as the biosynthesis of alkaloids, terpenoids, phenylpropanoids, and hormones in plants. Plants utilize these metabolites for growth and defense against biotic and abiotic stress. In this study, we identified 346 P450 (GmP450) enzymes encoded by 317 genes in soybean where 26 genes produced splice variants.
View Article and Find Full Text PDFThe large-scale deployment of resistance to () genes in soybean has led to the rapid evolution of the virulence profile (pathotype) of . populations. Determining the pathotypes of .
View Article and Find Full Text PDFMutation of phytoglobin 2 (Pgb2) increases the number of somatic embryos in Arabidopsis. To assess the effects of the cellular localization of Pgb2 on embryo formation, an inducible system expressing a fusion protein consisting of Pgb2 linked to the steroid-binding domain of the rat glucocorticoid receptor (GR) was introduced in a pgb2 mutant line lacking the ability to express Pgb2. In this transgenic system, Pgb2 remains in the cytoplasm but migrates into the nucleus upon exposure to dexamethasone (DEX).
View Article and Find Full Text PDFPrevious studies have shown that the beneficial effect of suppression of the Arabidopsis phytoglobin 2 gene, PGB2, on somatic embryogenesis occurs through the accumulation of nitric oxide (NO) within the embryogenic cells originating from the cultured explant. NO activates the expression of Allene oxide synthase (AOS) and Lipoxygenase 2 (LOX2), genes encoding two key enzymes of the jasmonic acid (JA) biosynthetic pathway, elevating JA content within the embryogenic tissue. The number of embryos in the single aos1-1 mutant and pgb2-aos1-1 double mutant declined, and was not rescued by increasing levels of NO stimulating embryogenesis in wild-type tissue.
View Article and Find Full Text PDFWe report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective.
View Article and Find Full Text PDFPlants are susceptible to infection by a broad range of fungal pathogens. A range of proteins have been evaluated that can enhance tolerance to these pathogens by heterologous expression in transgenic carrot tissues. The protocols for carrot transformation with Arabidopsis NPR1 (Non-Expressor of Pathogenesis-Related Proteins 1) are described in this chapter, using the herbicide resistance gene bar, which encodes phosphinothricin acetyltransferase, as a selectable marker.
View Article and Find Full Text PDFProgrammed cell death (PCD) in multicellular organisms is a vital process in growth, development, and stress responses that contributes to the formation of tissues and organs. Although numerous studies have defined the molecular participants in apoptotic and PCD cascades, successful identification of early master regulators that target specific cells to live or die is limited. Using Zea mays somatic embryogenesis as a model system, we report that the expressions of two plant hemoglobin (Hb) genes (ZmHb1 and ZmHb2) regulate the cell survival/death decision that influences somatic embryogenesis through their cell-specific localization patterns.
View Article and Find Full Text PDFPlant Signal Behav
August 2013
Plant hemoglobins are ubiquitous molecules involved in several aspects of plant development and stress responses. Studies on the functional aspects of plant hemoglobins at the cellular level in these processes are limited, despite their ability to scavenge nitric oxide (NO), an important signal molecule interfering with hormone synthesis and sensitivity. This mini-review summarizes current knowledge on plant hemoglobins, analyzes their participation in plant pathogen interaction and embryogenesis and proposes a possible model centering on jasmonic acid (JA) as a downstream component of hemoglobin responses.
View Article and Find Full Text PDFThe metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.
View Article and Find Full Text PDFAltered expression of Brassica napus (Bn) SHOOTMERISTEMLESS (STM) affects the morphology and behaviour of microspore-derived embryos (MDEs). While down-regulation of BnSTM repressed the formation of the shoot meristem (SAM) and reduced the number of Brassica MDEs able to regenerate viable plants at germination, over-expression of BnSTM enhanced the structure of the SAM and improved regeneration frequency. Within dissected SAMs, the induction of BnSTM up-regulated the expression of many transcription factors (TFs) some of which directly involved in the formation of the meristem, i.
View Article and Find Full Text PDFLiuwei Dihuang (LWDH), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ) induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE) and water extract (LWDH-WE). Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts.
View Article and Find Full Text PDFWe review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available.
View Article and Find Full Text PDFThe development of transgenic plants highly resistant to a range of pathogens using traditional signal gene expression strategies has been largely ineffective. Modification of systemic acquired resistance (SAR) through the overexpression of a controlling gene such as NPR1 (non-expressor of PR genes) offers an attractive alternative for augmenting the plants innate defense system. The Arabidopsis (At) NPR1 gene was successfully introduced into 'Nantes Coreless' carrot under control of a CaMV 35S promoter and two independent transgenic lines (NPR1-I and NPR1-XI) were identified by Southern and Northern blot hybridization.
View Article and Find Full Text PDFPlants are susceptible to infection by a broad range of fungal pathogens. Many horticulturally important crop species lack adequate genetic resistance to disease. Studies on potential mechanisms of disease resistance in plants have revealed the importance of a range of pathogenesis-related (PR) proteins with antifungal activity in reducing colonization of plant tissues by pathogens.
View Article and Find Full Text PDFA full-length hexokinase cDNA was cloned from Solanum chacoense, a wild relative of the cultivated potato. Analysis of the predicted primary sequence suggested that the protein product, ScHK2, may be targeted to the secretory pathway and inserted in the plant plasma membrane, facing the cytosol. ScHK2 was expressed as a hexahistidine-tagged protein in Escherichia coli.
View Article and Find Full Text PDF