Publications by authors named "Owen Tang"

Article Synopsis
  • * Endothelial colony-forming cells (ECFCs) derived from blood may offer personalized avenues for potential new therapies targeting vascular function in CAD.
  • * The study utilizes the Opera Phenix High-Content Screening System to measure mitochondrial superoxide levels in cells, finding that PKT-100, a new drug, can significantly reduce excessive oxidative stress in patient-derived ECFCs, suggesting its potential as a treatment target.
View Article and Find Full Text PDF

Annually, peripheral arterial disease is estimated to cost over USD 21 billion and diabetic foot disease an estimated at USD 9-13 billion. Mirabegron is a TGA-approved beta-3 adrenoreceptor agonist, shown to be safe and effective in the treatment of overactive bladder syndrome by stimulating bladder smooth muscle relaxation. In this review, we discuss the potential use of beta-3 adrenoreceptor agonists as therapeutic agents repurposed for peripheral arterial disease and diabetic foot ulcers.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na-K-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH.

View Article and Find Full Text PDF

The current coronary artery disease (CAD) risk scores for predicting future cardiovascular events rely on well-recognized traditional cardiovascular risk factors derived from a population level but often fail individuals, with up to 25% of first-time heart attack patients having no risk factors. Non-invasive imaging technology can directly measure coronary artery plaque burden. With an advanced lipidomic measurement methodology, for the first time, we aim to identify lipidomic biomarkers to enable intervention before cardiovascular events.

View Article and Find Full Text PDF

Cardiovascular disease remains a leading cause of mortality with an estimated half a billion people affected in 2019. However, detecting signals between specific pathophysiology and coronary plaque phenotypes using complex multi-omic discovery datasets remains challenging due to the diversity of individuals and their risk factors. Given the complex cohort heterogeneity present in those with coronary artery disease (CAD), we illustrate several different methods, both knowledge-guided and data-driven approaches, for identifying subcohorts of individuals with subclinical CAD and distinct metabolomic signatures.

View Article and Find Full Text PDF

Mechanisms involved in the individual susceptibility to atherosclerotic coronary artery disease (CAD) beyond traditional risk factors are poorly understood. Here, we describe the utility of cultured patient-derived endothelial colony-forming cells (ECFCs) in examining novel mechanisms of CAD susceptibility, particularly the role of dysregulated redox signalling. ECFCs were selectively cultured from peripheral blood mononuclear cells from 828 patients from the BioHEART-CT cohort, each with corresponding demographic, clinical and CT coronary angiographic imaging data.

View Article and Find Full Text PDF

Liquid chromatography-mass spectrometry-based metabolomics studies are increasingly applied to large population cohorts, which run for several weeks or even years in data acquisition. This inevitably introduces unwanted intra- and inter-batch variations over time that can overshadow true biological signals and thus hinder potential biological discoveries. To date, normalisation approaches have struggled to mitigate the variability introduced by technical factors whilst preserving biological variance, especially for protracted acquisitions.

View Article and Find Full Text PDF

Peripheral arterial disease (PAD) is a major burden, resulting in limb claudication, repeated surgical interventions and amputation. There is an unmet need for improved medical management of PAD that improves quality of life, maintains activities of daily life and reduces complications. Nitric oxide (NO)/redox balance is a key regulator of angiogenesis.

View Article and Find Full Text PDF

Despite effective prevention programs targeting cardiovascular risk factors, coronary artery disease (CAD) remains the leading cause of death. Novel biomarkers are needed for improved risk stratification and primary prevention. To assess for independent associations between plasma metabolites and specific CAD plaque phenotypes we performed liquid chromatography mass-spectrometry on plasma from 1002 patients in the BioHEART-CT study.

View Article and Find Full Text PDF

Background: Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia.

View Article and Find Full Text PDF

Functionalized poly(ethylene dioxythiophene) (f-PEDOT) was copolymerized with two vinyl monomers of different hydrophilicity, acrylic acid and hydroxyethyl methacrylate, to produce electroconductive hydrogels with a range of physical and electronic properties. These hydrogels not only possessed tailored physical properties, such as swelling ratios and mechanical properties, but also displayed electroactivity dependent on the chemical composition of the network. Raman spectroscopy indicated that the functional PEDOT in the hydrogels is in an oxidized form, most likely accounting for the good electrochemical response of the hydrogels observed in physiological buffer.

View Article and Find Full Text PDF

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent.

View Article and Find Full Text PDF

Background: The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats.

View Article and Find Full Text PDF

Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O), hydrogen peroxide (HO) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases.

View Article and Find Full Text PDF
Article Synopsis
  • The authors developed functional polystyrene nanoparticles stabilized by polyacrylamide through a surfactant-free RAFT emulsion polymerization process.
  • They employed fluorescent tagging with rhodamine B to enhance visualization for tracking the nanoparticles' behavior in biological systems.
  • The research included experiments in human renal cells and mouse models to study how these nanoparticles are taken up and distributed within living organisms.
View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a syndrome characterised by an increase in pulmonary vascular resistance. This results in elevated resting pulmonary artery pressure and leads to progressive right ventricular (RV) failure, secondary to increased afterload. Although initially thought to be a disease driven primarily by endothelial dysfunction with a resultant vasoconstrictor versus vasodilator imbalance, it has become increasingly apparent that the rise in pulmonary vascular resistance that causes RV failure is also attributable to pulmonary vascular remodelling.

View Article and Find Full Text PDF

We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) comprise of a novel class of endogenous small noncoding RNAs that frequently downregulate the expression of target genes. Recent reports suggest that miRNA-200b prevents epithelial-to-mesenchymal transition (EMT) in cancer cells by targeting the E-box binding transcription factors Zinc finger E-box-binding homeobox 1 (ZEB1) and Zinc finger E-box-binding homeobox 2 (ZEB2). About 35% of active fibroblasts are derived from EMT which is central to the development of progressive renal fibrosis.

View Article and Find Full Text PDF

The centrality of the transcriptional regulator Snail in epithelial-to-mesenchymal transformation (EMT), known to occur in models of diabetic nephropathy, has not been established. Transforming growth factor beta-1 (TGFbeta1) is induced in diabetic nephropathy and induces both Snail and EMT. Hypoxia inducible factors (HIFs) are known to induce Snail, independent of TGFbeta1.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a key role in the pathogenesis of HIV infection. HIV interacts with these cells through 2 pathways in 2 temporal phases, initially via endocytosis and then via de novo replication. Here the transcriptional response of human DCs to HIV-1 was studied in these phases and at different stages of the virus replication cycle using purified HIV-1 envelope proteins, and inactivated and viable HIV-1.

View Article and Find Full Text PDF