Publications by authors named "Owen T Summerscales"

The new square-planar complexes M[NNN](pyridine) (M = Fe (1), Co(2); NNN = 2,6-bis(2,6-diisopropylphenylamidomethyl)pyridine) were synthesized and fully characterized to investigate small molecule activation on this platform and also associated ligand innocence. The equatorial pyridine solvent moiety could not be removed; a new bis-ligand species Co[NNN.H]2 (3) was synthesized in low yield while attempting to make the base-free derivative.

View Article and Find Full Text PDF

A shift to the hydrogen economy requires the development of an effective hydrogen fuel carrier with high volumetric and gravimetric storage capacity. Ammonia borane (AB) has emerged as a leading candidate due to its light weight and multiple protic (N-H) and hydridic (B-H) hydrogens. As a consequence, much work has been directed towards fine tuning the release of H2 from AB, in addition to its regeneration from the dehydrogenated "spent fuel" materials.

View Article and Find Full Text PDF

Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield.

View Article and Find Full Text PDF

Treatment of the dimetallynes Ar'EEAr' [E = Ge, Sn; Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-iPr(2))(2)] with a cyclic olefin-cyclopentadiene (CpH), cyclopentene, 1,4-cyclohexadiene (CHD), or cyclohexene-showed that, with the exception of cyclohexene, they react readily, affording C-H activation at room temperature. Reaction of the digermyne and distannyne with CpH gave the cyclopentadienyl anion, which is bound in a π-fashion to a mononuclear group 14 element center, along with evolution of hydrogen gas. Unusually, the digermyne also reacted with cyclopentene to give the same dehydroaromatization product, formed from triple C-H activation/dehydrogenation.

View Article and Find Full Text PDF

Reaction of a digermyne with cyclooctatetraene (cot) gave two isomeric products. A Ge(II) inverse sandwich is formed as the kinetic product, which was a result of complete Ge≡Ge bond cleavage and the formation of a π-bound cot ring. This isomerized in solution at room temperature over a period of 5 days to give the thermodynamic product, a tetracyclic diene-digermane, in which a single-bonded Ge-Ge moiety has inserted into a C═C bond of the cot carbocycle.

View Article and Find Full Text PDF

The mixed-sandwich U(III) complexes [U(eta-C8H6{SiiPr(3)-1,4}2)(eta-CpR)(THF)] (R=Me5, Me4H) react with CO2 to give free CO and the U(IV) carbonate products [U(eta-C8H6{SiiPr(3)-1,4}2)(eta-CpR)]2(micro-eta1:eta2-CO3)]; the latter has been structurally characterised for R=Me4H; a 25% molar excess of the U(III) reductant gives a mixture of the carbonate and squarate [U(eta-C8H6{SiiPr(3)-1,4}2)(eta-C5Me4H)]2(micro-eta2:eta2-C4O4) products-the first synthesis of an oxocarbon from a CO2 carbon source.

View Article and Find Full Text PDF

Structural, magnetic and theoretical studies show that the bimetallic pentalene complex, Mn(2)(C(8)H(4)(1,4-Si(i)Pr(3)))(2), contains both high and low spin Mn(ii) in two very different sites.

View Article and Find Full Text PDF

The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.

View Article and Find Full Text PDF

Despite the long history of the Fischer-Tropsch reaction, carbon monoxide has proven remarkably resistant to selective homologation under mild conditions. Here, we find that an organouranium(III) complex induces efficient reductive trimerization of carbon monoxide at room temperature and pressure. The result is a triangular, cyclic C3O(2-)3, or deltate, dianion held between two uranium(IV) units.

View Article and Find Full Text PDF