Methylmercury (MeHg) is a potent neurotoxin commonly found in aquatic environments and primarily formed by microbial methylation of inorganic divalent mercury (Hg(II)) under anoxic conditions. Recent evidence, however, points to the production of MeHg also in oxic pelagic waters, but the magnitude and the drivers for this process remain unclear. Here, we performed a controlled experiment testing the hypothesis that inputs of terrestrial dissolved organic matter (tDOM) to coastal waters enhance MeHg formation increased bacterial activity.
View Article and Find Full Text PDFClimate change is projected to cause increased inflow of terrestrial dissolved organic matter to coastal areas in northerly regions. Estuarine bacterial community will thereby receive larger loads of organic matter and inorganic nutrients available for microbial metabolism. The composition of the bacterial community and its ecological functions may thus be affected.
View Article and Find Full Text PDFDecades of intensive discharge from industrial activities into coastal systems has resulted in the accumulation of a variety of persistent organic pollutants (POPs) in marine waters and sediments, having detrimental impacts on aquatic ecosystems and the resident biota. POPs are among the most hazardous chemicals originating from industrial activities due to their biotoxicity and resistance to environmental degradation. Bacterial communities are known to break down many of these aromatic compounds, and different members of naturally occurring bacterial consortia have been described to work in syntrophic association to thrive in heavily contaminated waters and sediments, making them potential candidates as bioindicators of environmental pollution.
View Article and Find Full Text PDFThe influence of nutrient availability and light conditions on phytoplankton size-structure, nutritional strategy and production was studied in a phosphorus-poor estuary in the northern Baltic Sea receiving humic-rich river water. The relative biomass of mixotrophic nanophytoplankton peaked in spring when heterotrophic bacterial production was high, while autotrophic microphytoplankton had their maximum in summer when primary production displayed highest values. Limiting substance (phosphorus) only showed small temporal variations, and the day light was at saturating levels all through the study period.
View Article and Find Full Text PDFCoastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g., pollution), and a combination of the two pressures.
View Article and Find Full Text PDFMicrobes are ubiquitous and often occur in functionally and taxonomically complex communities. Unveiling these community dynamics is one of the main challenges of microbial research. Combining a robust, cost effective and widely used method such as Terminal Restriction Fragment Length Polymorphism (T-RFLP) with a Next Generation Sequencing (NGS) method (Illumina MiSeq), offers a solid alternative for comprehensive assessment of microbial communities.
View Article and Find Full Text PDFClimate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels.
View Article and Find Full Text PDFIncreased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects of elevated DOM on a coastal pelagic food web from the coastal northern Baltic Sea, in a 32-day mesocosm experiment. In particular, the study addresses the response of bacterioplankton to differences in character and composition of supplied DOM.
View Article and Find Full Text PDFIn this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %.
View Article and Find Full Text PDFGrowth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.
View Article and Find Full Text PDFEndothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation.
View Article and Find Full Text PDFClimate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity.
View Article and Find Full Text PDF1. High-latitude species (and populations within species) are adapted to short and cold summers. They often have high growth and development rates to fully use the short growing season and mature before the onset of winter.
View Article and Find Full Text PDFA common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe.
View Article and Find Full Text PDFA nine year study was carried out on the evolution of macroscopic "acid streamer" growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and "Ferrovum myxofaciens") and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name "Acidithrix ferrooxidans"). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis).
View Article and Find Full Text PDFFlooded packed-bed bioreactors, prepared by immobilizing four different species of acidophilic iron-oxidizing bacteria on porous glass beads, were compared for their ferric iron-generating capacities when operated in batch and continuous flow modes over a period of up to 9 months, using a ferrous iron-rich synthetic liquor and acid mine drainage (AMD) water. The bacteria used were strains of Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, a Ferrimicrobium-like isolate (TSTR) and a novel Betaproteobacterium (isolate PSTR), which were all isolated from relatively low-temperature mine waters. Three of the bacteria used were chemoautotrophs, while the Ferrimicrobium isolate was an obligate heterotroph.
View Article and Find Full Text PDFAn extremely acidic (pH 2.5-2.75) metal-rich stream draining an abandoned mine in the Iberian Pyrite Belt, Spain, was ramified with stratified macroscopic gelatinous microbial growths ('acid streamers' or 'mats').
View Article and Find Full Text PDF