Publications by authors named "Owen Noonan"

A bottom-up self-assembly approach is developed for the synthesis of type heterotrimeric nanoparticles, which can be converted into secondary Janus-type silica derivatives. Compared to spherical ones, Janus silica nanoparticles stimulate stronger phagocytosis and transcytosis through intestinal epithelial microfold cells and exhibit higher cargo transport across an epithelial monolayer model mimicking the human intestinal epithelium.

View Article and Find Full Text PDF

Rechargeable aluminum (Al) batteries are emerging as a promising post lithium-ion battery technology. Herein, we demonstrate a conceptually new design of rechargeable aluminum-selenium (Al-Se) batteries by understanding the selenium chemistry and controlling the electrode reaction. The Al-Se battery consists of a composite cathode including selenium nanowires and mesoporous carbon (CMK-3) nanorods, an Al metal anode and chloroaluminate ionic liquid electrolyte.

View Article and Find Full Text PDF

Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.

View Article and Find Full Text PDF

Rattle-type magnetic mesoporous hollow carbon (RMMHC) materials have shown great promise as adsorbents for water treatment. In this work, we report a surfactant-free synthesis of RMMHC nanoparticles (NPs) using magnetite NPs as the core, tetrapropyl orthosilicate, resorcinol and formaldehyde to form the shell followed by carbonization and selective silica etching. The pore size, specific surface area and pore volume of RMMHC NPs can be tuned by varying the carbonization temperature (500, 700 and 900 °C).

View Article and Find Full Text PDF

Arsenic contamination in natural water has posed a significant threat to global health due to its toxicity and carcinogenity. Adsorption technology is an easy and flexible method for arsenic removal with high efficiency. In this Article, we demonstrated the synthesis of mesoporous MgO hollow spheres (MgO-HS) and their application as high performance arsenite (As(III)) adsorbent.

View Article and Find Full Text PDF

Mesoporous hollow carbon nanospheres (MHCS) have been extensively studied owning to their unique structural features and diverse potential applications. A surfactant-free self-assembly approach between resorcinol/formaldehyde and silicon alkoxide has emerged as an important strategy to prepare MHCS. Extending such a strategy to other substituted phenols to produce heterogeneous-atom-doped MHCS remains a challenge due to the very different polymerization kinetics of various resins.

View Article and Find Full Text PDF

Mesoporous carbon hollow spheres (MCHS) have wide applications, including catalysis, absorption, and energy storage/conversion. Herein, we report a one-pot, surfactant-free synthesis of MCHS using three molecules: resorcinol, formaldehyde, and tetrapropyl orthosilicate. The co-condensation process between the in situ generated silica primary particles and the polymer oligomers is regulated, leading to monodispersed MCHS with adjustable pore sizes from micropores to 13.

View Article and Find Full Text PDF

A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.

View Article and Find Full Text PDF

A novel mesoporous material modified with both insulin-binding-aptamers and hydrophobic methyl groups is synthesized. With rationally designed pore structures and surface chemistry, this material is applied in sample pre-treatment for ELISA, and enables the quantification (0.25-5 pg ml(-1)) of insulin in serum, 30-fold enhancement of the limit-of-detection compared to the commercial ELISA kit.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MCM-41) with different surface chemistry were used as carrier system to study its influence on drug delivery and anticancer activity of curcumin (CUR). CUR was encapsulated in pristine MCM-41 (hydrophilic and negatively charged), amino functionalized MCM-41 (MCM-41-NH2 which is hydrophilic and positively charged), and methyl functionalized MCM-41 (MCM-41-CH3 which is hydrophobic and negatively charged) and evaluated for in vitro release and cell cytotoxicity in human squamous cell carcinoma cell line (SCC25). Various techniques were employed to evaluate the performance of these materials on cellular uptake and anticancer activity in the SCC25 cell line.

View Article and Find Full Text PDF

A unique combined pore approach to the sensitive detection of human insulin is developed. Through a systematic study to understand the impact of pore size and surface chemistry of nanoporous materials on their enrichment and purification performance, the advantages of selected porous materials are integrated to enhance detection sensitivity in a unified two-step process. In the first purification step, a rationally designed large pore material (ca.

View Article and Find Full Text PDF

Mass spectrometry (MS) based analyses have received intense research interest in a series of rapidly developing disciplines. Although current MS techniques have enjoyed great successes, several key challenges still remain in practical applications, especially for the detection of biomolecules in biological systems. The use of nanomaterials in MS based analysis provides a promising approach due to their unique physical and chemical properties.

View Article and Find Full Text PDF