Publications by authors named "Owen L Lewis"

Ion-induced volume phase transitions in polyelectrolyte gels play an important role in physiological processes such as mucus storage and secretion in the gut, nerve excitation, and DNA packaging. Experiments have shown that changes in ionic composition can trigger rapid swelling and deswelling of these gels. Based on a previously developed computational model, we carry out 2D simulations of gel deswelling within an ionic bath.

View Article and Find Full Text PDF

Gastric mucus is a polyelectrolyte gel that serves as the primary defense of the stomach lining against acid and digestive enzymes. Mucus is released from granules in specialized cells where it is stored at very high concentration. Experiments show that such a dense mucus gel may swell explosively within a short time period, and that this is accompanied by a massive transport of monovalent cations from the extracellular environment into the densely packed mucus in exchange for divalent calcium that had crosslinked the negatively-charged mucus fibers.

View Article and Find Full Text PDF

Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, FcϵRI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the production of inflammatory cytokines.

View Article and Find Full Text PDF

Volume phase transitions in polyeletrolyte gels play important roles in many biophysical processes such as DNA packaging, nerve excitation, and cellular secretion. The swelling and deswelling of these charged polymer gels depend strongly on their ionic environment. In this paper, we present an extension to our previous two-fluid model for ion-binding-mediated gel swelling.

View Article and Find Full Text PDF

The control of transport through mucus layers is a ubiquitous phenomenon in physiological systems. Mucus is often tasked with the mediation of passive, diffusive transport of small ionic species. However, questions remain regarding how mucin gel characteristics (charge density of the polymeric network, binding affinity of ions with mucus) govern the rate at which ions diffuse through mucus layers.

View Article and Find Full Text PDF

It is generally accepted that the gastric mucosa and adjacent mucus layer are critical in the maintenance of a pH gradient from stomach lumen to stomach wall, protecting the mucosa from the acidic environment of the lumen and preventing auto-digestion of the epithelial layer. No conclusive study has shown precisely which physical, chemical, and regulatory mechanisms are responsible for maintaining this gradient. However, experimental work and modeling efforts have suggested that concentration dependent ion-exchange at the epithelial wall, together with hydrogen ion/mucus network binding, may produce the enormous pH gradients seen in vivo.

View Article and Find Full Text PDF

Diffusive transport of small ionic species through mucus layers is a ubiquitous phenomenon in physiology. However, some debate remains regarding how the various characteristics of mucus (charge of the polymers themselves, binding affinity of ions with mucus) impact the rate at which small ions may diffuse through a hydrated mucus gel. Indeed it is not even clear if small ionic species diffuse through mucus gel at an appreciably different rate than they do in aqueous solution.

View Article and Find Full Text PDF

Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families.

View Article and Find Full Text PDF

Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods.

View Article and Find Full Text PDF

Background: Patients with eosinophilic esophagitis have increased numbers of mucosal mast cells. Administration of the proton pump inhibitor omeprazole can reduce both esophageal mast cell and eosinophil numbers and attenuate type 2 inflammation in these subjects.

Objective: Given that maintenance of an acidic environment within granules is important for mast cell homeostasis, we sought to evaluate the effects of omeprazole on mast cell functions including development, IgE:FcεRI-mediated activation, and responses to food allergen.

View Article and Find Full Text PDF

Gastric mucus gel is known to exhibit dramatic and unique swelling behaviors in response to the ionic composition of the hydrating solution. This swelling behavior is important in the maintenance of the mucus layer lining the stomach wall, as the layer is constantly digested by enzymes in the lumen, and must be replenished by new mucus that swells as it is secreted from the gastric wall. One hypothesis suggests that the condensed state of mucus at secretion is maintained by transient bonds with calcium that form crosslinks.

View Article and Find Full Text PDF

It is generally accepted that the gastric mucus layer provides a protective barrier between the lumen and the mucosa, shielding the mucosa from acid and digestive enzymes and preventing autodigestion of the stomach epithelium. However, the precise mechanisms that contribute to this protective function are still up for debate. In particular, it is not clear what physical processes are responsible for transporting hydrogen protons, secreted within the gastric pits, across the mucus layer to the lumen without acidifying the environment adjacent to the epithelium.

View Article and Find Full Text PDF

This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate.

View Article and Find Full Text PDF

F-actin networks are involved in cell mechanical processes ranging from motility to endocytosis. The mesoscale architecture of assemblies of individual F-actin polymers that gives rise to micrometer-scale rheological properties is poorly understood, despite numerous in vivo and vitro studies. In vitro networks have been shown to organize into spatial patterns when spatially confined, including dense spherical shells inside spherical emulsion droplets.

View Article and Find Full Text PDF