Nucleoside ions that were furnished on ribose with a 2'--acetyl radical group were generated in the gas phase by multistep collision-induced dissociation of precursor ions tagged with radical initiator groups, and their chemistry was investigated in the gas phase. 2'--Acetyladenosine cation radicals were found to undergo hydrogen transfer to the acetoxyl radical from the ribose ring positions that were elucidated using specific deuterium labeling of 1'-H, 2'-H, and 4'-H and in the N-H and O-H exchangeable positions, favoring 4'-H transfer. Ion structures and transition-state energies were calculated by a combination of Born-Oppenheimer molecular dynamics and density functional theory and used to obtain unimolecular rate constants for competitive hydrogen transfer and loss of the acetoxyl radical.
View Article and Find Full Text PDF