Publications by authors named "Owen G Rehrauer"

The previously described optimized binary compressive detection (OB-CD) strategy enables fast hyperspectral Raman (and fluorescence) spectroscopic analysis of systems containing two or more chemical components. However, each OB-CD filter collects only a fraction of the scattered photons and the remainder of the photons are lost. Here, we present a refinement of OB-CD, the OB-CD2 strategy, in which all of the collected Raman photons are detected using a pair of complementary binary optical filters that direct photons of different colors to two photon counting detectors.

View Article and Find Full Text PDF

Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration.

View Article and Find Full Text PDF

The recently-developed optimized binary compressive detection (OB-CD) strategy has been shown to be capable of using Raman spectral signatures to rapidly classify and quantify liquid samples and to image solid samples. Here we demonstrate that OB-CD can also be used to quantitatively separate Raman and fluorescence features, and thus facilitate Raman-based chemical analyses in the presence of fluorescence background. More specifically, we describe a general strategy for fitting and suppressing fluorescence background using OB-CD filters trained on third-degree Bernstein polynomials.

View Article and Find Full Text PDF

Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component samples are available for training.

View Article and Find Full Text PDF