Biogeographical reconstructions of the Indo-Australian Archipelago (IAA) have suggested a recent spread across the Sunda and Sahul shelves of lineages with diverse origins, which appears to be congruent with a geological history of recent tectonic uplift in the region. However, this scenario is challenged by new geological evidence suggesting that the Sunda shelf was never submerged prior to the Pliocene, casting doubt on the interpretation of recent uplift and the correspondence of evidence from biogeography and geology. A mismatch between geological and biogeographical data may occur if analyses ignore the dynamics of extinct lineages, because this may add uncertainty to the timing and origin of clades in biogeographical reconstructions.
View Article and Find Full Text PDFPhylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems.
View Article and Find Full Text PDFPhenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion).
View Article and Find Full Text PDFThe architecture of root systems is an important driver of plant fitness, competition and ecosystem processes. However, the methodological difficulty of mapping roots hampers the study of these processes. Existing approaches to match individual plants to belowground samples are low throughput and species specific.
View Article and Find Full Text PDFWallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems.
View Article and Find Full Text PDFEvolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution.
View Article and Find Full Text PDFCarotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles, but generally little is known about the factors affecting their maintenance in populations. We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.
View Article and Find Full Text PDFThe impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonized isolated, disused mines with phytotoxic, zinc-contaminated soils.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2020
Shifts in flowering time have the potential to act as strong prezygotic reproductive barriers in plants. We investigate the role of flowering time divergence in two species of mountain rose () endemic to Lord Howe Island, Australia, a minute and isolated island in the Tasman Sea. and are sister species and have divergent ecological niches on the island but grow sympatrically for much of their range, and likely speciated on the island.
View Article and Find Full Text PDFRecently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S.
View Article and Find Full Text PDFSimilar patterns of genomic divergence have been observed in the evolution of plant species separated by oceans.
View Article and Find Full Text PDFOne of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountain ranges across the globe [1-5]. The evolutionary processes driving these rapid diversification events remain unclear [6-8].
View Article and Find Full Text PDFHowea palms are viewed as one of the most clear-cut cases of speciation in sympatry. The sister species Howea belmoreana and H. forsteriana are endemic to the oceanic Lord Howe Island, Australia, where they have overlapping distributions and are reproductively isolated mainly by flowering time differences.
View Article and Find Full Text PDFAlthough it is now widely accepted that speciation can occur in the face of continuous gene flow, with little or no spatial separation, the mechanisms and genomic architectures that permit such divergence are still debated. Here, we examined speciation in the face of gene flow in the Howea palms of Lord Howe Island, Australia. We built a genetic map using a novel method applicable to long-lived tree species, combining it with double digest restriction site-associated DNA sequencing of multiple individuals.
View Article and Find Full Text PDFMicrobes can have profound effects on their hosts, driving natural selection, promoting speciation and determining species distributions. However, soil-dwelling microbes are rarely investigated as drivers of evolutionary change in plants. We used metabarcoding and experimental manipulation of soil microbiomes to investigate the impact of soil and root microbes in a well-known case of sympatric speciation, the Howea palms of Lord Howe Island (Australia).
View Article and Find Full Text PDFHybrid zones typically form as a result of species coming into secondary contact, but can also be established in situ as an ecotonal hybrid zone, a situation which has been reported far less frequently. An altitudinal hybrid zone on Mount Etna between two ragwort species (the low elevation Senecio chrysanthemifolius and high elevation S. aethnensis) could potentially represent either of these possibilities.
View Article and Find Full Text PDFThe role of hybridization between diversifying species has been the focus of a huge amount of recent evolutionary research. While gene flow can prevent speciation or initiate species collapse, it can also generate new hybrid species. Similarly, while adaptive divergence can be wiped out by gene flow, new adaptive variation can be introduced via introgression.
View Article and Find Full Text PDFThe hybrid zone on Mount Etna (Sicily) between Senecio aethnensis and Senecio chrysanthemifolius (two morphologically and physiologically distinct species) is a classic example of an altitudinal cline. Hybridization at intermediate altitudes and gradients in phenotypic and life-history traits occur along altitudinal transects of the volcano. The cline is considered to be a good example of ecological selection with species differences arising by divergent selection opposing gene flow.
View Article and Find Full Text PDFEnvironmental or geological changes can create new niches that drive ecological species divergence without the immediate cessation of gene flow. However, few such cases have been characterized. On a recently formed volcano, Mt.
View Article and Find Full Text PDF