Publications by authors named "Owen D M Stechishin"

Purpose: The EGFR and PI3K/mTORC1/2 pathways are frequently altered in glioblastoma (GBM), but pharmacologic targeting of EGFR and PI3K signaling has failed to demonstrate efficacy in clinical trials. Lack of relevant models has rendered it difficult to assess whether targeting these pathways might be effective in molecularly defined subgroups of GBMs. Here, human brain tumor-initiating cell (BTIC) lines with different combinations of endogenous EGFR wild-type, EGFRvIII, and PTEN mutations were used to investigate response to the EGFR inhibitor gefitinib, mTORC1 inhibitor rapamycin, and dual mTORC1/2 inhibitor AZD8055 alone and in combination with temozolomide (TMZ) EXPERIMENTAL DESIGN: In vitro growth inhibition and cell death induced by gefitinib, rapamycin, AZD8055, and TMZ or combinations in human BTICs were assessed by alamarBlue, neurosphere, and Western blotting assays.

View Article and Find Full Text PDF

Purpose: The current standard of care for glioblastoma (GBM) involves a combination of surgery, radiotherapy, and temozolomide chemotherapy, but this regimen fails to achieve long-term tumor control. Resistance to temozolomide is largely mediated by expression of the DNA repair enzyme MGMT; however, emerging evidence suggests that inactivation of MSH6 and other mismatch repair proteins plays an important role in temozolomide resistance. Here, we investigate endogenous MSH6 mutations in GBM, anaplastic oligodendroglial tumor tissue, and corresponding brain tumor-initiating cell lines (BTIC).

View Article and Find Full Text PDF

Investigating the biology of oligodendroglioma and its characteristic combined deletion of chromosomal arms 1p and 19q, mediated by an unbalanced translocation, t(1;19)(q10;p10), has been hampered by the lack of cell lines that harbor these traits. We grew cells from 2 anaplastic oligodendrogliomas in serum-free conditions. Serial propagation and expansion led to the establishment of permanent cell lines that maintained the genetic signature of the parent oligodendrogliomas and displayed features of brain tumor stem cells in vitro.

View Article and Find Full Text PDF