Publications by authors named "Owen Cornwell"

Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the success of COVID-19 vaccines, there is still a need for additional prevention and treatment methods for at-risk individuals.
  • AZD7442 is a combination of two monoclonal antibodies that target different parts of the SARS-CoV-2 spike protein, effectively neutralizing the virus and preventing its entry into human cells.
  • Clinical studies suggest that AZD7442 can provide long-lasting protection, potentially up to 12 months, especially benefiting those at higher risk for severe COVID-19 outcomes.
View Article and Find Full Text PDF

Antibody-drug conjugates have become one of the most actively developed classes of drugs in recent years. Their great potential comes from combining the strengths of large and small molecule therapeutics: the exquisite specificity of antibodies and the highly potent nature of cytotoxic compounds. More recently, the approach of engineering antibody-drug conjugate scaffolds to achieve highly controlled drug to antibody ratios has focused on substituting or inserting cysteines to facilitate site-specific conjugation.

View Article and Find Full Text PDF

NMR studies and X-ray crystallography have shown that the structures of the 99-residue amyloidogenic protein β-microglobulin (βm) and its more aggregation-prone variant, D76N, are indistinguishable, and hence, the reason for the striking difference in their aggregation propensities remains elusive. Here, we have employed two protein footprinting methods, hydrogen-deuterium exchange (HDX) and fast photochemical oxidation of proteins (FPOP), in conjunction with ion mobility-mass spectrometry, to probe the differences in conformational dynamics of the two proteins. Using HDX-MS, a clear difference in HDX protection is observed between these two proteins in the E-F loop (residues 70-77) which contains the D76N substitution, with a significantly higher deuterium uptake being observed in the variant protein.

View Article and Find Full Text PDF

Differences in conformational dynamics between two full-length monoclonal antibodies have been probed in detail using Fast Photochemical Oxidation of Proteins (FPOP) followed by proteolysis and LC-ESI-MS/MS analyses. FPOP uses hydroxyl radical labeling to probe the surface-accessible regions of proteins and has the advantage that the resulting covalent modifications are irreversible, thus permitting optimal downstream analysis. Despite the two monoclonal antibodies (mAbs) differing by only three amino acids in the heavy chain complementarity determining regions (CDRs), one mAb, MEDI1912-WFL, has been shown to undergo reversible self-association at high concentrations and exhibited poor pharmacokinetic properties in vivo, properties which are markedly improved in the variant, MEDI1912-STT.

View Article and Find Full Text PDF

Hydrogen deuterium exchange (HDX) coupled to mass spectrometry (MS) is a well-established technique employed in the field of structural MS to probe the solvent accessibility, dynamics and hydrogen bonding of backbone amides in proteins. By contrast, fast photochemical oxidation of proteins (FPOP) uses hydroxyl radicals, liberated from the photolysis of hydrogen peroxide, to covalently label solvent accessible amino acid side chains on the microsecond-millisecond timescale. Here, we use these two techniques to study the structural and dynamical differences between the protein β-microglobulin (βm) and its amyloidogenic truncation variant, ΔN6.

View Article and Find Full Text PDF