Automation is vital to accelerating research. In recent years, the application of self-driving labs to materials discovery and device optimization has highlighted many benefits and challenges inherent to these new technologies. Successful automated workflows offer tangible benefits to fundamental science and industrial scale-up by significantly increasing productivity and reproducibility all while enabling entirely new types of experiments.
View Article and Find Full Text PDFA library of statistically random pentafluorostyrene (PFS) and methyl methacrylate (MMA) copolymers with narrow molecular weight distributions was produced, using nitroxide mediated polymerization (NMP) to study the effect of polymer composition on the performance of bottom-gate top-contact organic thin-film transistors, when utilized as the dielectric medium. Contact angle measurements confirmed the ability to tune the surface properties of copolymer thin films through variation of its PFS/MMA composition, while impedance spectroscopy determined the effect of this variation on dielectric properties. Bottom-gate, top-contact copper phthalocyanine (CuPc) based organic thin-film transistors were fabricated using the random copolymers as a dielectric layer.
View Article and Find Full Text PDFAnthracene-based semiconductors have attracted great interest due to their molecular planarity, ambient and thermal stability, tunable frontier molecular orbitals and strong intermolecular interactions that can lead to good device field-effect transistor performance. In this study, we report the synthesis of six anthracene derivatives which were di-substituted at the 2,6-positions, their optical, electrochemical and thermal properties, and their single crystal structures. It was found that 2,6-functionalization with various fluorinated phenyl derivatives led to negligible changes in the optical behaviour while influencing the electrochemical properties.
View Article and Find Full Text PDFN-type organic semiconductors are notoriously unstable in air, requiring the design of new materials that focuses on lowering their LUMO energy levels and enhancing their air stability in organic electronic devices such as organic thin-film transistors (OTFTs). Since the discovery of the notably air stable and high electron mobility polymer poly{[N,N'-bis (2-octyldodecyl)- naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,29-bisthiophene)} (N2200), it has become a popular n-type semiconductor, with numerous materials being designed to mimic its structure. Although N2200 itself is well-studied, many of these comparable materials have not been sufficiently characterized to compare their air stability to N2200.
View Article and Find Full Text PDFAnthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.
View Article and Find Full Text PDFQuality control is imperative for since the primary cannabinoids, Δ-tetrahydrocannabinol (THC) and cannabidiol (CBD), elicit very different pharmacological effects. THC/CBD ratios are currently determined by techniques not readily accessible by consumers or dispensaries and which are impractical for use in the field by law-enforcement agencies. CuPc- and F-CuPc-based organic thin-film transistors have been combined with a cannabinoid-sensitive chromophore for the detection and differentiation of THC and CBD.
View Article and Find Full Text PDFMetal phthalocyanines (MPcs) are a widely studied class of materials that are frequently used in organic thin-film transistors (OTFTs), organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). The stability of these devices and the materials used in their fabrication is important to realize their widespread adoption. Seven P-type MPcs: zinc (ZnPc), magnesium (MgPc), aluminum (AlClPc), iron (FePc), cobalt (CoPc), and titanium (TiOPc) were investigated as the semiconductors in OTFTs under varying temperatures (25 °C to 150 °C) and environmental conditions (air and vacuum, < 0.
View Article and Find Full Text PDFEfficient synthesis of silicon phthalocyanines (SiPc) eliminating the strenuous reaction conditions and hazardous reagents required by classical methods is described. Implementation into organic thin-film transistors (OTFTs) affords average electron field-effect mobility of 3.1 × 10 cm V s and threshold voltage of 25.
View Article and Find Full Text PDFMany health-related diagnostics are expensive, time consuming and invasive. Organic thin film transistor (OTFT) based devices show promise to enable rapid, low cost diagnostics that are an important aspect to enabling increased access and availability to healthcare. Here, we describe OTFTs based upon two structurally similar P (copper phthalocyanine - CuPc) and N (hexdecafluoro copper phthalocyanine - F-CuPc) type semiconductor materials, and demonstrate their potential for use as both temperature and DNA sensors.
View Article and Find Full Text PDFBottom-gate bottom-contact organic thin film transistors (OTFTs) were prepared with four novel star-shaped conjugated molecules containing a fused thieno[3,2-]thiophene moiety incorporated either in the core and/or at the periphery of the molecular framework. The molecules were soluble in CS₂, allowing for solution-processing techniques to be employed. OTFTs with different channel geometries were characterized in both air and vacuum in order to compare environmental effects on performance.
View Article and Find Full Text PDFCross-linking of hole-transporting polymer thin films in organic light emitting diodes (OLEDs) has been shown to increase device efficacy when subsequent layers are deposited from solution. This improvement, due to resistance of the films to dissolution, could also be achieved by covalently grafting the polymer film to the substrate. Using nitroxide-mediated polymerization (NMP), we synthesized a novel poly(9-(4-vinylbenzyl)-9H-carbazole) (poly(VBK)) copolymer which can be cross-linked and also developed two simple methods for the grafting-to or grafting-from, also known as surface-initiated polymerization, of poly(VBK) to indium tin oxide (ITO) substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2015
Metal phthalocyanines (MPcs) are versatile conjugated macrocycles that have attracted a great deal of interest as active components in modern organic electronic devices. In particular, the charge transport properties of MPcs, their chemical stability, and their synthetic versatility make them ideal candidate materials for use in organic thin-film transistors (OTFTs). This article reviews recent progress in both the material design and device engineering of MPc-based OTFTs, including the introduction of solubilizing groups on the MPcs and the surface modification of substrates to induce favorable MPc self-assembly.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.