Background: Gaps in information access impede immunization uptake, especially in low-resource settings where cutting-edge and innovative digital interventions are limited given the digital inequity. Our objective was to develop an Artificially Intelligent (AI) chatbot to respond to caregiver's immunization-related queries in Pakistan and investigate its feasibility and acceptability in a low-resource, low-literacy setting.
Methods: We developed Bablibot (Babybot), a local language immunization chatbot, using Natural Language Processing (NLP) and Machine Learning (ML) technologies with Human in the Loop feature.
Background: Despite the availability of free routine immunizations in low- and middle-income countries, many children are not completely vaccinated, vaccinated late for age, or drop out from the course of the immunization schedule. Without the technology to model and visualize risk of large datasets, vaccinators and policy makers are unable to identify target groups and individuals at high risk of dropping out; thus default rates remain high, preventing universal immunization coverage. Predictive analytics algorithm leverages artificial intelligence and uses statistical modeling, machine learning, and multidimensional data mining to accurately identify children who are most likely to delay or miss their follow-up immunization visits.
View Article and Find Full Text PDF