Background: Yeasts exhibit promising potential for the microbial conversion of crude glycerol, owing to their versatility in delivering a wide range of value-added products, particularly lipids. Sweetwater, a methanol-free by-product of the fat splitting process, has emerged as a promising alternative feedstock for the microbial utilization of crude glycerol. To further optimize sweetwater utilization, we compared the growth and lipid production capabilities of 21 oleaginous yeast strains under different conditions with various glycerol concentrations, sweetwater types and pH.
View Article and Find Full Text PDFAs plants encounter various environmental stresses, judicial allocation of resources to stress response is crucial for plant fitness. The plant OXS2 (OXIDATIVE STRESS 2) family has been reported to play important roles in growth regulation and stress response. Here, we report that the maize OXS2 family member ZmOXS2a when expressed in Arabidopsis retards growth including delayed flowering, but improves heat tolerance.
View Article and Find Full Text PDFTransgene with recombination sites to address biosafety concerns engineered into lettuce to produce EspB and γ-intimin C280 for oral vaccination against EHEC O157:H7. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a food-borne pathogen where ruminant farm animals, mainly bovine, serve as reservoirs. Bovine vaccination has been used to prevent disease outbreaks, and the current method relies on vaccines subcutaneously injected three times per year.
View Article and Find Full Text PDFThe rare sugar -allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises -allulose 3-epimerase (DAEase) or -psicose 3-epimerase (DPEase) to convert -fructose into -allulose. Additionally, the process can also utilise -tagatose 3-epimerase (DTEase).
View Article and Find Full Text PDFAppl Environ Microbiol
February 2023
Lactic acid bacteria (LAB) are well known to elicit health benefits in humans, but their functional metabolic landscapes remain unexplored. Here, we analyze differences in growth, intestinal persistence, and postbiotic biosynthesis of six representative LAB and their interactions with 15 gut bacteria under 11 dietary regimes by combining multi-omics and in silico modeling. We confirmed predictions on short-term persistence of LAB and their interactions with commensals using cecal microbiome abundance and spent-medium experiments.
View Article and Find Full Text PDFThe clustering of transgenes at a chromosome location minimizes the number of segregating loci that needs to be introgressed to field cultivars. Transgenes could be efficiently stacked through site-specific recombination and a recombinase-mediated in planta gene stacking process was described previously in tobacco based on the Mycobacteriophage Bxb1 site-specific integration system. Since this process requires a recombination site in the genome, this work describes the generation of target sites in the rice genome.
View Article and Find Full Text PDFN-cre and C-cre added in separate lines reassemble functional Cre in F1 progeny to excise unnecessary DNA, including cre DNA, thereby eliminating generations needed to cross in and out cre. Crop improvement via transgenesis can benefit through efficient DNA integration strategies. As new traits are developed, new transgenes can be stacked by in planta site-specific integration near previous transgenes, thereby facilitating their introgression to field cultivars as a single segregation locus.
View Article and Find Full Text PDFCadmium (Cd) is a toxic heavy metal that can accumulate in crop plants. We reported previously the engineering of a low cadmium-accumulating line (2B) of rice through overexpression of a truncated OsO3L2 gene. As expression of this transgene was highest in plant roots, amplicon and metatranscriptome sequencing were used to investigate the possibility that its expression affects root associated microbes.
View Article and Find Full Text PDFFive soybean target lines with recombinase sites at suitable genomic positions were obtained and tested for site-specific gene stacking. For introgression of new transgenic traits to field cultivars, adding new DNA to an existing transgene locus would reduce the number of segregating loci to reassemble back into a breeding line. We described previously an in planta transgene stacking system using the Bxb1 integrase to direct new DNA into a genomic target, but for this system to operate, the target locus must have a preexisting recombination site for Bxb1-mediated integration.
View Article and Find Full Text PDFThe incidence and prevalence of inflammatory disorders have increased globally, and is projected to double in the next decade. Gut microbiome-based therapeutics have shown promise in ameliorating chronic inflammation. However, they are largely experimental, context- or strain-dependent and lack a clear mechanistic basis.
View Article and Find Full Text PDFFront Plant Sci
February 2022
Transgene integration typically takes place in an easy-to-transform laboratory variety before the transformation event is introgressed through backcrosses to elite cultivars. As new traits are added to existing transgenic lines, site-specific integration can stack new transgenes into a previously created transgenic locus. site-specific integration minimizes the number of segregating loci to assemble into a breeding line, but cannot break genetic linkage between the transgenic locus and nearby undesirable traits.
View Article and Find Full Text PDFSite-specific gene stacking could reduce the number of segregating loci and expedite the introgression of transgenes from experimental lines to field lines. Recombinase-mediated site-specific gene stacking provides a flexible and efficient solution, but this approach requires a recombinase recognition site in the genome. Here, we describe several cotton (Gossypium hirsutum cv.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2021
A new and efficient purification process for recombinant human insulin production was developed by exploring new resins and optimizing purification steps from E. coli inclusion body washing to insulin polishing. A combined additives inclusion body wash protocol drastically improved efficiency in clarifying ZZ-proinsulin samples.
View Article and Find Full Text PDFHistone replacement in chromatin-remodeling plays an important role in eukaryotic gene expression. New histone variants replacing their canonical counterparts often lead to a change in transcription, including responses to stresses caused by temperature, drought, salinity, and heavy metals. In this study, we describe a chromatin-remodeling process triggered by eviction of Rad3/Tel1-phosphorylated H2Aα, in which a heterologous plant protein AtOXS3 can subsequently bind fission yeast HA2.
View Article and Find Full Text PDFAbdominal Pain Caused by Viral Infection Is Not Always Trivial We report on a 28-year-old previously healthy patient with initially elevated temperature and cough and developing most severe epigastric pain and peritonism in the right upper abdomen. A "bedside" sonography revealed a portal vein thrombosis, the CT additionally partial thromboses of the vena lienalis, vena mesenterica superior. During the examination, a SARS-CoV-2 infection (IgM, IgG) was confirmed.
View Article and Find Full Text PDFAbscisic acid (ABA) and the AP2/ERF (APETALA2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor called ABA INSENSITIVE 4 (ABI4) play pivotal roles in plant growth responses to environmental stress. An analysis of seedling development in Arabidopsis ABA hypersensitive mutants suggested that OXS3 (OXIDATIVE STRESS 3), OXS3b, O3L3 (OXS3 LIKE 3), O3L4, and O3L6 were negative regulators of ABI4 expression. We therefore characterized the roles of the OXS3 family members in ABA signaling.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2021
The zinc finger transcription factor OXIDATIVE STRESS 2 (OXS2) was previously reported to be involved in oxidative stress tolerance and stress escape. Here we report that an Arabidopsis oxs2-1 mutant is also more sensitive to salt stress. Conversely, the overproduction of a C-terminal fragment of OXS2, the 'AT3' fragment, can enhance salt tolerance in Arabidopsis by upregulating the transcription of at least six salt-induced genes: COR15A, COR47, RD29B, KIN1, ACS2 and ACS6.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2021
Lactic acid bacteria (LAB) are a group of gut commensals increasingly recognized for their potential to deliver bioactive molecules . The delivery of therapeutic proteins, in particular, can be achieved by anchoring them to the bacterial surface, and various anchoring domains have been described for this application. Here, we investigated a new cell anchoring domain (CAD4a) isolated from a Lactobacillus protein, containing repeats of a SH3_5 motif that binds non-covalently to peptidoglycan in the LAB cell wall.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
In plants, SNF1-related protein kinase 1 (SnRK1) senses nutrient and energy status and transduces this information into appropriate responses. Oxidative Stress 3 (OXS3) and family members share a highly conserved putative N-acetyltransferase catalytic domain (ACD). Here, we describe that the ACD contains two candidate SnRK1 recognition motifs and that SnRK1 can interact with most of the OXS3 family proteins.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2020
The nuclear export signal (NES) endows a protein nuclear export ability. Surprisingly, our previous study shows that just the NES peptide of Schizosaccharomyces pombe Oxs1 (SpOxs1) can confer diamide tolerance by competing with transcription factor Pap1 for nuclear transport. This finding intrigued us to test the function of NESs from heterologous organisms.
View Article and Find Full Text PDFAs millions of seeds are produced from a breeding line, the long-term stability of transgene expression is vital for commercial-scale production of seeds with transgenic traits. Transgenes can be silenced by epigenetic mechanisms, but reactivation of expression can occur as a result of treatment with chromatin modification inhibitors such as 5-azacytidine, from stress such as heat or UV-B, or in mutants that have acquired a defect in gene silencing. Previously, we targeted a gfp reporter gene into the tobacco (Nicotiana tabacum) genome by site-specific recombination but still found some silenced lines among independent integration events.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2019
Stress-induced regulation of flowering time insures evolutionary fitness. Stress-induced late flowering is thought to result from a plant evoking tolerance mechanism to wait out the stress before initiating reproduction. Stress-induced early flowering, on the other hand, is thought to be a stress-escape response.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2019
Survival of a species depends on reproductive fitness and a plant's floral transition is controlled by developmental and environmental signals. In Arabidopsis, the floral integrators SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1) and FT (FLOWERING LOCUS T) sense various pathway signals to activate floral meristem identity genes. At high stress intensity, greater nuclear accumulation of the zinc-finger transcription factor OXS2 (OXIDATIVE STRESS 2) activates an early-flowering stress-escape response.
View Article and Find Full Text PDF