Inorganic metal halide solar cells made from perovskite stand out for having outstanding efficiency, cheap cost, and simple production processes and recently have generated attention as a potential rival in photovoltaic technology. Particularly, lead-free CaAsBr inorganic materials have a lot of potential in the renewable industry due to their excellent qualities, including thermal, electric, optoelectronic, and elastic features. In this work, we thoroughly analyzed the stress-driven structural, mechanical, electrical, and optical properties of CaAsBr utilizing first-principles theory.
View Article and Find Full Text PDFThe structural, optical, electrical, thermodynamic, superconducting, and mechanical characteristics of LiGaIr full-Heusler alloys with the MnCuAl configuration were comprehensively examined in this work using the first-principles computation approach premised upon density functional analysis. This theoretical approach is the first to investigate the influence of pressure on the mechanical and optical characteristics of LiGaIr. The structural and chemical bonding analysis shows that hydrostatic pressure caused a decrease in the lattice constant, volume, and bond length of each cell.
View Article and Find Full Text PDF