Publications by authors named "Ovidiu Radulescu"

Morphogen gradients convey essential spatial information during tissue patterning. While both concentration and timing of morphogen exposure are crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homologue of NF-κB, which orchestrates dorso-ventral patterning in the embryo.

View Article and Find Full Text PDF

Many biological and medical questions can be modeled using time-to-event data in finite-state Markov chains, with the phase-type distribution describing intervals between events. We solve the inverse problem: given a phase-type distribution, can we identify the transition rate parameters of the underlying Markov chain? For a specific class of solvable Markov models, we show this problem has a unique solution up to finite symmetry transformations, and we outline a recursive method for computing symbolic solutions for these models across any number of states. Using the Thomas decomposition technique from computer algebra, we further provide symbolic solutions for any model.

View Article and Find Full Text PDF

Biological signalling systems are complex, and efforts to build mechanistic models must confront a huge parameter space, indirect and sparse data, and frequently encounter multiscale and multiphysics phenomena. We present HOSS, a framework for Hierarchical Optimization of Systems Simulations, to address such problems. HOSS operates by breaking down extensive systems models into individual pathway blocks organized in a nested hierarchy.

View Article and Find Full Text PDF

This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours.

View Article and Find Full Text PDF

Monitoring transcription in living cells gives access to the dynamics of this complex fundamental process. It reveals that transcription is discontinuous, whereby active periods (bursts) are separated by one or several types of inactive periods of distinct lifetimes. However, decoding temporal fluctuations arising from live imaging and inferring the distinct transcriptional steps eliciting them is a challenge.

View Article and Find Full Text PDF

Summary: Recently, symbolic computation and computer algebra systems have been successfully applied in systems biology, especially in chemical reaction network theory. One advantage of symbolic computation is its potential for qualitative answers to biological questions. Qualitative methods analyze dynamical input systems as formal objects, in contrast to investigating only part of the state space, as is the case with numerical simulation.

View Article and Find Full Text PDF

The MAPK/ERK pathway is an essential intracellular signaling pathway. Its deregulation is involved in tumor transformation and progression. The discovery of activating mutations of BRAF in various cancers has opened new therapeutic avenues with BRAF protein kinase inhibitors.

View Article and Find Full Text PDF

Cutaneous melanoma is a highly invasive tumor and, despite the development of recent therapies, most patients with advanced metastatic melanoma have a poor clinical outcome. The most frequent mutations in melanoma affect the BRAF oncogene, a protein kinase of the MAPK signaling pathway. Therapies targeting both BRAF and MEK are effective for only 50% of patients and, almost systematically, generate drug resistance.

View Article and Find Full Text PDF

To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood.

View Article and Find Full Text PDF

Genes are expressed in stochastic transcriptional bursts linked to alternating active and inactive promoter states. A major challenge in transcription is understanding how promoter composition dictates bursting, particularly in multicellular organisms. We investigate two key Drosophila developmental promoter motifs, the TATA box (TATA) and the Initiator (INR).

View Article and Find Full Text PDF

Promoter-proximal pausing of RNA polymerase II is a key process regulating gene expression. In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral reactivation is unclear.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter.

View Article and Find Full Text PDF

Organisms must ensure that expression of genes is directed to the appropriate tissues at the correct times, while simultaneously ensuring that these gene regulatory systems are robust to perturbation. This idea is captured by a mathematical concept called r-robustness, which says that a system is robust to a perturbation in up to r - 1 randomly chosen parameters. r-robustness implies that the biological system has a small number of sensitive parameters and that this number can be used as a robustness measure.

View Article and Find Full Text PDF

Protein phosphorylation acts as an efficient switch controlling deregulated key signaling pathway in cancer. Computational biology aims to address the complexity of reconstructed networks but overrepresents well-known proteins and lacks information on less-studied proteins. A bioinformatic tool to reconstruct and select relatively small networks that connect signaling proteins to their targets in specific contexts is developed.

View Article and Find Full Text PDF

The original version of this Article contained an error in Fig. 4a, in which the "=" sign of the equation was inadvertently replaced with a "-" sign. This has been corrected in the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos.

View Article and Find Full Text PDF

Although novel targeted therapies have significantly improved the overall survival of patients with advanced melanoma, understanding and combatting drug resistance remains a major clinical challenge. Using partial differential equations, we describe the evolution of a cellular population through time, space, and phenotype dimensions, in the presence of various drug species. We then use this framework to explore models in which resistance is attained by either mutations (irreversible) or plasticity (reversible).

View Article and Find Full Text PDF

During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to 'bookmark' specific loci, thereby providing a mitotic memory.

View Article and Find Full Text PDF

Mitosis is induced by the activation of the cyclin B/cdk1 feedback loop that creates a bistable state. The triggering factor promoting active cyclin B/cdk1 switch has been assigned to cyclin B/cdk1 accumulation during G2. However, this complex is rapidly inactivated by Wee1/Myt1-dependent phosphorylation of cdk1 making unlikely a triggering role of this kinase in mitotic commitment.

View Article and Find Full Text PDF

Sensing and reciprocating cellular systems (SARs) are important for the operation of many biological systems. Production in interferon (IFN) SARs is achieved through activation of the Jak-Stat pathway, and downstream upregulation of IFN regulatory factor (IRF)-7 and IFN transcription, but the role that high- and low-affinity IFNs play in this process remains unclear. We present a comparative between a minimal spatio-temporal partial differential equation model and a novel spatio-structural-temporal (SST) model for the consideration of receptor, binding, and metabolic aspects of SAR behaviour.

View Article and Find Full Text PDF

We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies.

View Article and Find Full Text PDF

Motivation: Integration of metabolic networks with '-omics' data has been a subject of recent research in order to better understand the behaviour of such networks with respect to differences between biological and clinical phenotypes. Under the conditions of steady state of the reaction network and the non-negativity of fluxes, metabolic networks can be algebraically decomposed into a set of sub-pathways often referred to as extreme currents (ECs). Our objective is to find the statistical association of such sub-pathways with given clinical outcomes, resulting in a particular instance of a self-contained gene set analysis method.

View Article and Find Full Text PDF

The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk) protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells.

View Article and Find Full Text PDF

We propose and solve analytically a stochastic model for the dynamics of a binary biological switch, defined as a DNA unit with two mutually exclusive configurations, each one triggering the expression of a different gene. Such a device has the potential to be used as a memory unit for biological computing systems designed to operate in noisy environments. We discuss a recent implementation of this switch in living cells, the recombinase addressable data (RAD) module.

View Article and Find Full Text PDF