The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation.
View Article and Find Full Text PDFBackground: Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites.
View Article and Find Full Text PDFMonitoring aboveground carbon stocks and fluxes from tropical deforestation and forest degradation is important for mitigating climate change and improving forest management. However, high temporal and spatial resolution analyses are rare. This study presents the most detailed tracking of aboveground carbon over time, with yearly, quarterly and monthly estimations of emissions using the stock-difference approach and masked by the forest loss layer of Global Forest Watch.
View Article and Find Full Text PDFTropical forests are crucial for mitigating climate change, but many forests continue to be driven from carbon sinks to sources through human activities. To support more sustainable forest uses, we need to measure and monitor carbon stocks and emissions at high spatial and temporal resolution. We developed the first large-scale very high-resolution map of aboveground carbon stocks and emissions for the country of Peru by combining 6.
View Article and Find Full Text PDF