The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components.
View Article and Find Full Text PDFAltering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect.
View Article and Find Full Text PDFGenetic variation is the basis of selection, evolution and breeding. Maize landraces represent a rich source of allelic diversity, but their efficient utilization in breeding and research has been hampered by their heterogeneous and heterozygous nature and insufficient information about most accessions. While molecular inventories of germplasm repositories are growing steadily, linking these data to meaningful phenotypes for quantitative traits is challenging.
View Article and Find Full Text PDFDiscovery and enrichment of favorable alleles in landraces are key to making them accessible for crop improvement. Here, we present two fundamentally different concepts for genome-based selection in landrace-derived maize populations, one based on doubled-haploid (DH) lines derived directly from individual landrace plants and the other based on crossing landrace plants to a capture line. For both types of populations, we show theoretically how allele frequencies of the ancestral landrace and the capture line translate into expectations for molecular and genetic variances.
View Article and Find Full Text PDFModel training on data from all selection cycles yielded the highest prediction accuracy by attenuating specific effects of individual cycles. Expected reliability was a robust predictor of accuracies obtained with different calibration sets. The transition from phenotypic to genome-based selection requires a profound understanding of factors that determine genomic prediction accuracy.
View Article and Find Full Text PDFNorthern corn leaf blight, caused by the fungal pathogen Setosphaeria turcica (anamorph Exserohilum turcicum), is one of the most devastating foliar diseases of maize (Zea mays). Four genes Ht1, Ht2, Ht3 and Htn1 represent the major sources of genetic resistance against the hemibiotrophic fungus S. turcica.
View Article and Find Full Text PDFHigh genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE).
View Article and Find Full Text PDFGenetic variation is of crucial importance for crop improvement. Landraces are valuable sources of diversity, but for quantitative traits efficient strategies for their targeted utilization are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-haploid lines derived from three maize landraces to make their native diversity for early development traits accessible for elite germplasm improvement.
View Article and Find Full Text PDFThe diversity of maize (Zea mays) is the backbone of modern heterotic patterns and hybrid breeding. Historically, US farmers exploited this variability to establish today's highly productive Corn Belt inbred lines from blends of dent and flint germplasm pools. Here, we report de novo genome sequences of four European flint lines assembled to pseudomolecules with scaffold N50 ranging from 6.
View Article and Find Full Text PDFDoubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantitative traits and make it accessible for breeding and genome-based studies. Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, variances, and trait correlations.
View Article and Find Full Text PDFA genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed.
View Article and Find Full Text PDFWall-associated kinases (WAKs) have recently been identified as major components of fungal and bacterial disease resistance in several cereal crop species. However, the molecular mechanisms of WAK-mediated resistance remain largely unknown. Here, we investigated the function of the maize gene ZmWAK-RLK1 (Htn1) that confers quantitative resistance to northern corn leaf blight (NCLB) caused by the hemibiotrophic fungal pathogen Exserohilum turcicum.
View Article and Find Full Text PDFSix quantitative trait loci (QTL) for Gibberella ear rot resistance in maize were tested in two different genetic backgrounds; three QTL displayed an effect in few near isogenic line pairs. Few quantitative trait loci (QTL) mapping studies for Gibberella ear rot (GER) have been conducted, but no QTL have been verified so far. QTL validation is prudent before their implementation into marker-assisted selection (MAS) programs.
View Article and Find Full Text PDFBackground: Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber.
View Article and Find Full Text PDFThe genetic dissection of root architecture and functions allows for a more effective and informed design of novel root ideotypes and paves the way to evaluate their effects on crop resilience to a number of abiotic stresses. In maize, limited attention has been devoted to the genetic analysis of root architecture diversity at the early stage. The difference in embryonic (including seminal and primary) root architecture between the maize reference line B73 (which mostly develops three seminal roots) and the landrace Gaspé Flint (with virtually no seminal roots) was genetically dissected using a collection of introgression lines grown in paper rolls and pots.
View Article and Find Full Text PDFKey Message: We have developed a SNP array for sunflower containing more than 25 K markers, representing single loci mostly in or near transcribed regions of the genome. The array was successfully applied to genotype a diversity panel of lines, hybrids, and mapping populations and represented well the genetic diversity of cultivated sunflower. Results of PCoA and population substructure analysis underlined the complexity of the genetic composition of current elite breeding material.
View Article and Find Full Text PDFNorthern corn leaf blight (NCLB) caused by the hemibiotrophic fungus Exserohilum turcicum is an important foliar disease of maize that is mainly controlled by growing resistant maize cultivars. The Htn1 locus confers quantitative and partial NCLB resistance by delaying the onset of lesion formation. Htn1 represents an important source of genetic resistance that was originally introduced from a Mexican landrace into modern maize breeding lines in the 1970s.
View Article and Find Full Text PDFThe efficiency of marker-assisted selection for native resistance to European corn borer stalk damage can be increased when progressing from a QTL-based towards a genome-wide approach. Marker-assisted selection (MAS) has been shown to be effective in improving resistance to the European corn borer (ECB) in maize. In this study, we investigated the performance of whole-genome-based selection, relative to selection based on individual quantitative trait loci (QTL), for resistance to ECB stalk damage in European elite maize.
View Article and Find Full Text PDFGenetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels. The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production.
View Article and Find Full Text PDFMultiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.).
View Article and Find Full Text PDFBackground: High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far.
Results: We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels).
The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.
View Article and Find Full Text PDFThe calibration data for genomic prediction should represent the full genetic spectrum of a breeding program. Data heterogeneity is minimized by connecting data sources through highly related test units. One of the major challenges of genome-enabled prediction in plant breeding lies in the optimum design of the population employed in model training.
View Article and Find Full Text PDFIntrogression libraries are valuable resources for QTL detection and breeding, but their development is costly and time-consuming. Selection strategies for the development of introgression populations with a limited number of individuals and high-throughput (HT) marker assays are required. The objectives of our simulation study were to design and compare selection strategies for the development of maize introgression populations of 100 lines with population sizes of 360-720 individuals per generation for different DH and S2 crossing schemes.
View Article and Find Full Text PDF