Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro.
View Article and Find Full Text PDFBacteria of the genus are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp.
View Article and Find Full Text PDFIn this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure.
View Article and Find Full Text PDFSoft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens.
View Article and Find Full Text PDFSoft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s.
View Article and Find Full Text PDFWe report the complete and annotated genome sequence of the plant-pathogenic enterobacterium Pectobacterium sp. strain SCC3193, a model strain isolated from potato in Finland. The Pectobacterium sp.
View Article and Find Full Text PDF