In this paper, we investigate the electronic structures of triphenylamine molecules with three different anchoring groups (pyridinyl, carboxyl, and phenyl-1,2-diol) before and after attachment with a p-type semiconductor, nickel oxide (100), surface. To understand the charge transfer characteristics of these structures commonly used in dyes of the dye-sensitized solar cells (DSSC), we use periodic models to study their configurations with density functional theory (DFT). We find that carboxyl and phenyl-1,2-diol anchors adsorb more strongly compared to pyridinyl anchor on NiO(100).
View Article and Find Full Text PDFThe development and benchmarking of computational chemistry methods rely on comparison with benchmark data. More and larger benchmark datasets are becoming available, and working efficiently with them is a necessity. The Cuby framework provides rich functionality for working with datasets, comes with many ready-to-use predefined benchmark sets, and interfaces with a wide range of computational chemistry software packages.
View Article and Find Full Text PDFAs the field of nanoelectronics based on biomolecules such as peptides and proteins rapidly grows, there is a need for robust computational methods able to reliably predict charge transfer properties at bio/metallic interfaces. Traditionally, hybrid quantum-mechanical/molecular-mechanical techniques are employed for systems where the electron hopping transfer mechanism is applicable to determine physical parameters controlling the thermodynamics and kinetics of charge transfer processes. However, these approaches are limited by a relatively high computational cost when extensive sampling of a configurational space is required, like in the case of soft biomatter.
View Article and Find Full Text PDFMetalloproteins, known to efficiently transfer electronic charge in biological systems, recently found their utilization in nanobiotechnological devices where the protein is placed into direct contact with metal surfaces. The feasibility of oxidation/reduction of the protein redox sites is affected by the reorganization free energies, one of the key parameters determining the transfer rates. While their values have been measured and computed for proteins in their native environments, i.
View Article and Find Full Text PDFHuntington's disease (HD) is an inherited neurodegenerative disorder characterized by severe disruption of cognitive and motor functions, including changes in posture and gait. A number of HD mouse models have been engineered that display behavioral and neuropathological features of the disease, but gait alterations in these models are poorly characterized. Sensitive high-throughput tests of fine motor function and gait in mice might be informative in evaluating disease-modifying interventions.
View Article and Find Full Text PDFPurpose: Dopamine receptors are involved in pathophysiology of neuropsychiatric diseases, including Huntington's disease (HD). PET imaging of dopamine D2 receptors (D2R) in HD patients has demonstrated 40% decrease in D2R binding in striatum, and D2R could be a reliable quantitative target to monitor disease progression. A D2/3R antagonist, [F] fallypride, is a high-affinity radioligand that has been clinically used to study receptor density and occupancy in neuropsychiatric disorders.
View Article and Find Full Text PDFWe report two novel functional dyes based on a boron-dipyrromethene (BODIPY) core displaying a panchromatic absorption with an extension to the near-infrared (NIR) range. An innovative synthetic approach for preparing the 2,3,5,6-tetramethyl-BODIPY unit is disclosed, and a versatile way to further functionalize this unit has been developed. The optoelectronic properties of the two dyes were computed by density functional theory modelling (DFT) and characterized through UV-vis spectroscopy and cyclic voltammetry (CV) measurements.
View Article and Find Full Text PDFHistaminergic H3 inverse agonists, by stimulating central histamine release, represent attractive drug candidates to treat cognitive disorders. The present studies aimed to describe the mechanistic profile of S 38093 a novel H3 receptors inverse agonist. S 38093 displays a moderate affinity for rat, mouse and human H3 receptors (Ki=8.
View Article and Find Full Text PDFThe aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington's disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15-60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice.
View Article and Find Full Text PDFDysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn.
View Article and Find Full Text PDFHuntington's disease (HD) is an inherited neurodegenerative disorder that primarily affects the medium-size GABAergic neurons of striatum. The R6/2 mouse line is one of the most widely used animal models of HD. Previously the hallmarks of HD-related pathology have been detected in photoreceptors and interneurons of R6/2 mouse retina.
View Article and Find Full Text PDFHuntington's disease is a neurodegenerative disorder caused by mutations in the CAG tract of huntingtin. Several studies in HD cellular and rodent systems have identified disturbances in cyclic nucleotide signaling, which might be relevant to pathogenesis and therapeutic intervention. To investigate whether selective phosphodiesterase (PDE) inhibitors can improve some aspects of disease pathogenesis in HD models, we have systematically evaluated the effects of a variety of cAMP and cGMP selective PDE inhibitors in various HD models.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal neurodegenerative disorder, characterized by severe behavioral, cognitive, and motor deficits. Since the discovery of the huntingtin gene (HTT) mutation that causes the disease, several mouse lines have been developed using different gene constructs of Htt. Recently, a new model, the zQ175 knock-in (KI) mouse, was developed (see description by Menalled et al, [1]) in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans.
View Article and Find Full Text PDFInformation about linkage disequilibrium (LD) is important in understanding the genome structure and has its applications in association studies. Here we present the first genome-wide LD study based on a founder population (East Finland). The LD data consist of 118 unrelated individuals and around 480,000 SNP pairs genotyped with the Affymetrix 100K genotyping assay.
View Article and Find Full Text PDFAntipsychotic drug treatment is known to modulate gene expression in experimental animals. In this study, candidate target genes for antipsychotic drug action were searched using microarrays after acute clozapine treatment (1, 6 and 24 h) in the rat prefrontal cortex. Microarray data clustering with a self-organizing map algorithm revealed differential expression of genes involved in presynaptic function following acute clozapine treatment.
View Article and Find Full Text PDFExpert Opin Ther Targets
June 2002
The rapidly accumulating amount of information concerning gene and protein expression patterns produced by functional genomics, proteomics and bioinformatics is presently providing new targets for drug development. Furthermore, the analysis of gene expression in cells and tissues affected by a disease may reveal the underlying metabolic pathways and cellular processes affected. Finally, changes in gene expression may be used in either diagnostics or the monitoring of drug responses.
View Article and Find Full Text PDFWe have characterized the effects of chronic clozapine and haloperidol treatments on the expression of fos (c-fos, fosB, fra-2) and jun (c-jun, junB, junD) family genes in the rat forebrain. The effects of chronic (17d) clozapine and haloperidol on mRNA expression were determined two hours, 24 hours, and six days after the last drug injection, and the DNA-binding activity of the activator protein-1 (AP-1) complex was studied after washout periods of 24 hours and six days. Chronic clozapine treatment with a 6 d washout period induced the expression of several fos and jun family genes in cortical regions, including the prefrontal cortex (PFC), and in the caudate putamen and nucleus accumbens.
View Article and Find Full Text PDF