Publications by authors named "Ouporov I"

Interactions of the glycolytic enzyme, fructose-1,6-bisphosphate aldolase (aldolase), with F-actin may be one mechanism for the colocalization of glycolytic enzymes. Examination of these interactions in different animal species tests this hypothesis by observing whether binding sites are conserved across species. Brownian dynamics (BD) simulations provide descriptions of such protein-protein interactions with the muscle isoforms of zebra fish and human aldolase.

View Article and Find Full Text PDF

Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al.

View Article and Find Full Text PDF

Monoclonal antibodies (mcAbs) specific to alkaline isoenzymes of horseradish peroxidase were used to characterize the antigenic properties of horseradish peroxidase. The results of a competitive binding assay indicated that monoclonal antibodies can be divided into three groups directed against distinct parts of the protein. The interaction of monoclonal antibodies with native and modified horseradish peroxidase showed also three different patterns of reactivity.

View Article and Find Full Text PDF

Brownian dynamics (BD) simulations test for channeling of the substrate, glyceraldehyde 3-phosphate (GAP), as it passes between the enzymes fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). First, BD simulations determined the favorable complexes between aldolase and GAPDH; two adjacent subunits of GAPDH form salt bridges with two subunits of aldolase. These intermolecular contacts provide a strong electrostatic interaction between the enzymes.

View Article and Find Full Text PDF

Brownian dynamics (BD) was used to simulate the binding of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to G- and F-actin. High-resolution three-dimensional models (X-ray and homology built) of the proteins were used in the simulations. The electrostatic potential about each protein was predicted by solving the linearized Poisson-Boltzmann equation for use in BD simulations.

View Article and Find Full Text PDF

Muscle actin and fructose-1,6-bisphosphate aldolase (aldolase) were chemically crosslinked to produce an 80 kDa product representing one subunit of aldolase linked to one subunit of actin. Hydroxylamine digestion of the crosslinked product resulted in two 40.5 kDa fragments, one that was aldolase linked to the 12 N-terminal residues of actin.

View Article and Find Full Text PDF

Compartmentation of proteins in cells is important to proper cell function. Interactions of F-actin and glycolytic enzymes is one mechanism by which glycolytic enzymes can compartment. Brownian dynamics (BD) simulations of the binding of the muscle form of the glycolytic enzyme fructose-1,6-bisphosphate aldolase (aldolase) to F- or G-actin provide first-encounter snapshots of these interactions.

View Article and Find Full Text PDF

Application of computer methods allowed us to demonstrate that plant peroxidases and auxin-binding proteins contain structurally similar fragments. The mapping of the fragments was done using a model structure of horseradish peroxidase. Five of six structurally similar fragments belong to the distal domain and form a subdomain in plant peroxidases that includes the distal heme-coordinating sequence, LHFHDC (amino acid residues 39-44 in horseradish peroxidase).

View Article and Find Full Text PDF

The effect of extremely acidic pH on the stability of tobacco peroxidase and lignin peroxidase holoenzymes has been studied. Stabilization of tobacco peroxidase holoenzyme in the presence of calcium cations at pH < 2 and stabilization of lignin peroxidase at pH > 2 in the presence of veratryl alcohol have been shown. The dependence of the reaction rate constant for hydrogen peroxide interaction with tobacco peroxidase on pH suggests that the reaction rate is under control of a group with pK of 2.

View Article and Find Full Text PDF

Recombinant horseradish peroxidase reactivated from E. coli inclusion bodies was studied in a reversed micellar system of AOT in octane. The ability of the recombinant enzyme, in contrast to native horseradish peroxidase, to form a dimeric structure was found.

View Article and Find Full Text PDF

Wild-type recombinant horseradish peroxidase purified and refolded from Escherichia coli inclusion bodies has been studied in the system of bis(2-ethylhexyl)sulphosuccinate sodium salt (Aerosol OT)-reversed micelles in octane. In contrast with native horseradish peroxidase the wild-type recombinant enzyme forms dimeric structures as judged by sedimentation analysis. Peroxidase substrates affect the equilibrium between monomeric and dimeric enzyme forms.

View Article and Find Full Text PDF

Peptide scanning (PEPSCAN) was used to determine linear antigenic determinants of horseradish peroxidase isoenzyme C (HRPC). For this purpose, we synthesized 303 overlapping hexapeptide fragments (with a step of one amino acid residue) of the protein primary structure and studied their interactions with anti-HRPC polyclonal antisera by ELISA. Experiments with various titers of antisera allowed us to determine linear antigenic determinants of HRPC; several such determinants were spatially located in regular elements of the secondary structure (alpha-helices) found both inside and outside the protein globule.

View Article and Find Full Text PDF

We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993).

View Article and Find Full Text PDF

The proton NMR spectra of DNA three-way junction complexes (TWJ) having unpaired pyrimidines, 5'-TT- and 5'-TC- on one strand at the junction site were assigned from 2D NOESY spectra acquired in H2O and D2O solvents and homonuclear 3D NOESY-TOCSY and 3D NOESY-NOESY in D2O solvent. TWJ are the simplest branched structures found in biologically active nucleic acids. Unpaired nucleotides are common features of such structures and have been shown to stabilize junction formation.

View Article and Find Full Text PDF