Earth harbours an extraordinary plant phenotypic diversity that is at risk from ongoing global changes. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change-shape the trait covariation that underlies plant phenotypic diversity. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands.
View Article and Find Full Text PDFPerennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown.
View Article and Find Full Text PDFGrazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
October 2022
Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as 'biocrust', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust.
View Article and Find Full Text PDFPLoS One
November 2021
The increasing severity of Striga gesnerioides attacks on cowpea across West Africa has been related to its prolificity, seed mobility and longevity, and adaptation to aridity, in a context of agricultural intensification. To understand this fast extension, we analyzed (1) the distributions of the crop and the witchweed with ecological niche modeling and multivariate climate analysis, and (2) the chronological information available from collections and the literature. The ecoclimatic envelope of S.
View Article and Find Full Text PDFThe capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water.
View Article and Find Full Text PDF