Publications by authors named "Oulton R"

Surface lattice resonance (SLR) lasers, where the gain is supplied by a thin-film active material and the feedback comes from multiple scattering by plasmonic nanoparticles, have shown both low threshold lasing and tunability of the angular and spectral emission at room temperature. However, typically used materials such as organic dyes and QD films suffer from photodegradation, which hampers practical applications. Here, we demonstrate photostable single-mode lasing of SLR modes sustained in an epitaxial solid-state InP slab waveguide.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent advancements involve using a pump beam to enhance signal conversion via four-wave mixing (FWM), focusing on resonances at the pump wavelength to achieve better nonlinear imaging.
  • * This approach allows for broadband nonlinear imaging across a wide infrared range (1000-4000 nm) with metasurfaces, representing a significant improvement for future compact photonic devices in all-optical infrared imaging.
View Article and Find Full Text PDF

Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible.

View Article and Find Full Text PDF

Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities.

View Article and Find Full Text PDF

The temporal coherence of an ideal Bose gas increases as the system approaches the Bose-Einstein condensation threshold from below, with coherence time diverging at the critical point. However, counterexamples have been observed for condensates of photons formed in an externally pumped, dye-filled microcavity, wherein the coherence time decreases rapidly for increasing particle number above threshold. This Letter establishes intermode correlations as the central explanation for the experimentally observed dramatic decrease in the coherence time beyond critical pump power.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors have attracted great attention as a novel class of gain materials for low-threshold, on-chip coherent light sources. Despite several experimental reports on lasing, the underlying gain mechanism of 2D materials remains elusive due to a lack of key information, including modal gain and the confinement factor. Here, we demonstrate a novel approach to directly determine the absorption coefficient of monolayer WS by characterizing the whispering gallery modes in a van der Waals microdisk cavity.

View Article and Find Full Text PDF

Gold nanoparticle (AuNP) decoration is a commonly used method to enhance the optical responses in many applications such as photocatalysis, biosensing, solar cells, etc. The morphology and structure of AuNPs are essential factors determining the functionality of the sample. However, tailoring the growth mechanism of AuNPs on an identical surface is not straightforward.

View Article and Find Full Text PDF

Understanding metal-semiconductor interfaces is critical to the advancement of photocatalysis and sub-bandgap solar energy harvesting where electrons in the metal can be excited by sub-bandgap photons and extracted into the semiconductor. In this work, we compare the electron extraction efficiency across Au/TiO and titanium oxynitride (TiON)/TiO interfaces, where in the latter case the spontaneously forming oxide layer (TiO) creates a metal-semiconductor contact. Time-resolved pump-probe spectroscopy is used to study the electron recombination rates in both cases.

View Article and Find Full Text PDF

Since Purcell's seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic antennas offer excellent control but only over a limited spectral range. Strategies to mutually tune and match emission and resonator frequency are often required, which is intricate and precludes the possibility of enhancing multiple transitions simultaneously.

View Article and Find Full Text PDF

Light-harvesting complexes in natural photosynthetic systems, such as those in purple bacteria, consist of photo-reactive chromophores embedded in densely packed "antenna" systems organized in well-defined nanostructures. In the case of purple bacteria, the chromophore antennas are composed of natural J-aggregates such as bacteriochlorophylls and carotenoids. Inspired by the molecular composition of such biological systems, we create a library of organic materials composed of densely packed J-aggregates in a polymeric matrix, in which the matrix mimics the optical role of a protein scaffold.

View Article and Find Full Text PDF

The Raman scattering of light by molecular vibrations is a powerful technique to fingerprint molecules through their internal bonds and symmetries. Since Raman scattering is weak, methods to enhance, direct and harness it are highly desirable, and this has been achieved using optical cavities, waveguides and surface-enhanced Raman scattering (SERS). Although SERS offers dramatic enhancements by localizing light within vanishingly small hot-spots in metallic nanostructures, these tiny interaction volumes are only sensitive to a few molecules, yielding weak signals.

View Article and Find Full Text PDF

The generation of photon pairs in quantum dots is in its nature deterministic. However, efficient extraction of photon pairs from the high index semiconductor material requires engineering of the photonic environment. We report on a micropillar device with 69.

View Article and Find Full Text PDF

Unidirectional (chiral) emission of light from a circular dipole emitter into a waveguide is only possible at points of perfect circular polarization (C points), with elliptical polarizations yielding a lower directional contrast. However, there is no need to restrict engineered systems to circular dipoles, and with an appropriate choice of dipole unidirectional emission is possible for any elliptical polarization. Using elliptical dipoles, rather than circular, typically increases the size of the area suitable for chiral interactions (in an exemplary mode by a factor ∼30), while simultaneously increasing coupling efficiencies.

View Article and Find Full Text PDF

Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified.

View Article and Find Full Text PDF

High-refractive index nanostructured dielectrics have the ability to locally enhance electromagnetic fields with low losses while presenting high third-order nonlinearities. In this work, we exploit these characteristics to achieve efficient ultrafast all-optical modulation in a crystalline gallium phosphide (GaP) nanoantenna through the optical Kerr effect (OKE) and two-photon absorption (TPA) in the visible/near-infrared range. We show that an individual GaP nanodisk can yield differential reflectivity modulations of up to ~40%, with characteristic modulation times between 14 and 66 fs, when probed at the anapole excitation (AE).

View Article and Find Full Text PDF

Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal-semiconductor interfaces is still elusive.

View Article and Find Full Text PDF

Investigating group-IV-based photonic components is a very active area of research with extensive interest in developing complementary metal-oxide-semiconductor (CMOS) compatible light sources. However, due to the indirect band gap of these materials, effective light-emitting diodes and lasers based on pure Ge or Si cannot be realized. In this context, there is considerable interest in developing group-IV based Raman lasers.

View Article and Find Full Text PDF
Article Synopsis
  • Ten years ago, three teams successfully demonstrated spasers, or plasmonic nanolasers, based on a theoretical concept proposed in 2003.
  • This text reviews the significant advancements in spaser technology, focusing on their fundamental properties, motivations for their development, and technological improvements such as reduced lasing thresholds and room-temperature operation.
  • Future research directions aim at miniaturization, exploring connections with Bose-Einstein condensation, and developing novel applications while addressing existing challenges.
View Article and Find Full Text PDF

While equilibrium phase transitions are easily described by order parameters and free-energy landscapes, for their non-stationary counterparts these quantities are usually ill-defined. Here, we probe transient non-equilibrium dynamics of an optically pumped, dye-filled microcavity. We quench the system to a far-from-equilibrium state and find delayed condensation close to a critical excitation energy, a transient equivalent of critical slowing down.

View Article and Find Full Text PDF
Article Synopsis
  • 2D hybrid organic-inorganic Ruddlesden-Popper perovskites (RPPs) display significant nonlinear optical properties due to strong excitonic effects in their multiple quantum wells.
  • Using nondegenerate pump-probe spectroscopy, the study investigates how these nonlinear effects influence the ultrafast dynamics of 2D RPP thin flakes, revealing that ∼100 nm thick sheets can achieve about 2% reflectivity modulation in just 20 fs under sub-bandgap excitation, which is five times better than previously reported photonic metasurfaces.
  • However, when excitation aligns with the excitonic absorption, the nonlinear response slows down significantly due to linear absorption creating long-lived free carriers, indicating that 2D RPPs
View Article and Find Full Text PDF

Gallium phosphide (GaP) is one of the few available materials with strong optical nonlinearity and negligible losses in the visible (λ > 450 nm) and near-infrared regime. In this work, we demonstrate that a GaP film can generate sub-30-fs (full width at half maximum) transmission modulation of up to ~70% in the 600- to 1000-nm wavelength range. Nonlinear simulations using parameters measured by the -scan approach indicate that the transmission modulation arises from the optical Kerr effect and two-photon absorption.

View Article and Find Full Text PDF

Materials with large optical nonlinearity, especially in the visible spectral region, are in great demand for applications in all-optical information processing and quantum optics. 2D hybrid Ruddlesden-Popper-type halide perovskites (RPPs) with tunable ultraviolet-to-visible direct bandgaps exhibit large nonlinear optical responses due to the strong excitonic effects present in their multiple quantum wells. Using a microscopic Z-scan setup with femtosecond laser pulses tunable across the visible spectrum, it is demonstrated that single-crystalline lead halide RPP nanosheets possess unprecedentedly large nonlinear refraction and absorption coefficients near excitonic resonances.

View Article and Find Full Text PDF

Nanolasers generate coherent light at the nanoscale. In the past decade, they have attracted intense interest, because they are more compact, faster and more power-efficient than conventional lasers. Thanks to these capabilities, nanolasers are now an emergent tool for a variety of practical applications.

View Article and Find Full Text PDF

Graphene has emerged as a promising material for optoelectronics due to its potential for ultrafast and broad-band photodetection. The photoresponse of graphene junctions is characterized by two competing photocurrent generation mechanisms: a conventional photovoltaic effect and a more dominant hot-carrier-assisted photothermoelectric (PTE) effect. The PTE effect is understood to rely on variations in the Seebeck coefficient through the graphene doping profile.

View Article and Find Full Text PDF