Publications by authors named "Oula Dagher"

The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen.

View Article and Find Full Text PDF

Therapeutic modalities that engage the immune system to recognize and eliminate cancer, known as cancer immunotherapy, has emerged as a distinct pillar of cancer therapy. Among the most promising treatment approaches are therapeutic vaccines, immune checkpoint blockade, bispecific T-cell engagers (BiTEs) and adoptive cell therapies. These approaches share a common mechanism of action, which is elicitation of a T-cell-based immune response, either endogenous or engineered, against tumor antigens, but interactions between the innate immune system, particularly antigen-presenting cells, and immune effectors also underlie the efficacy of cancer immunotherapies and approaches engaging these cells are also under development.

View Article and Find Full Text PDF

CD19-specific CAR-T cell therapies are the gold standard of adoptive cellular immunotherapy for hematopoietic malignancies. In Science Translational Medicine, Park et al. develop an oncolytic vaccinia virus that introduces truncated CD19 expression in solid tumors, which are then eradicated by CD19-specific CAR-T cells in immunodeficient and immunocompetent mouse models.

View Article and Find Full Text PDF

Introduction: New fluorinated diaryl ethers and bisarylic ketones were designed and evaluated for their anti-inflammatory effects in primary macrophages.

Methods: The synthesis of the designed molecules started from easily accessible and versatile -difluoro propargylic derivatives. The desired aromatic systems were obtained using Diels-Alder/aromatization sequences and this was followed by Pd-catalyzed coupling reactions and, when required, final functionalization steps.

View Article and Find Full Text PDF

Bradykinin (BK) and thromboxane-A2 (TX-A2) are two vasoactive mediators that modulate vascular tone and inflammation via binding to their cognate "class A" G-protein coupled receptors (GPCRs), BK-B2 receptors (B2R) and TX-prostanoid receptors (TP), respectively. Both BK and TX-A2 lead to ERK1/2-mediated vascular smooth muscle cell (VSMC) proliferation and/or hypertrophy. While each of B2R and TP could form functional dimers with various GPCRs, the likelihood that B2R-TP heteromerization could contribute to their co-regulation has never been investigated.

View Article and Find Full Text PDF