Incident reporting and learning systems provide an opportunity to identify systemic vulnerabilities that contribute to incidents and potentially degrade quality. The narrative of an incident is intended to provide a clear, easy to understand description of an incident. Unclear, incomplete or poorly organized narratives compromise the ability to learn from them.
View Article and Find Full Text PDFAim/objectives/background: The American College of Radiology (ACR), American Brachytherapy Society (ABS), and American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for transperineal permanent brachytherapy of prostate cancer. Transperineal permanent brachytherapy of prostate cancer is the interstitial implantation of low-dose rate radioactive seeds into the prostate gland for the purpose of treating localized prostate cancer.
Methods: This practice parameter was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.
Aim/objectives/background: The American College of Radiology (ACR), the American Brachytherapy Society (ABS), and the American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for the performance of low-dose-rate (LDR) brachytherapy. LDR brachytherapy is the application of radioactive sources in or on tumors in a clinical setting with therapeutic intent. The advantages of LDR brachytherapy include improving therapeutic ratios with lower doses to nontarget organs-at-risk and higher doses to a specific target.
View Article and Find Full Text PDFPurpose: The American College of Radiology (ACR), American Brachytherapy Society (ABS), American College of Nuclear Medicine (ACNM), American Society for Radiation Oncology (ASTRO), Society of Interventional Radiology (SIR), and Society of Nuclear Medicine and Molecular Imaging (SNMMI) have jointly developed a practice parameter on selective internal radiation therapy (SIRT) or radioembolization for treatment of liver malignancies. Radioembolization is the embolization of the hepatic arterial supply of hepatic primary tumors or metastases with a microsphere yttrium-90 brachytherapy device.
Materials And Methods: The ACR -ABS -ACNM -ASTRO -SIR -SNMMI practice parameter for SIRT or radioembolization for treatment of liver malignancies was revised in accordance with the process described on the ACR website (https://www.
Purpose: Safe delivery of brachytherapy and establishing a safety culture are critical in high-quality brachytherapy. The American Brachytherapy Society (ABS) Quality and Safety Committee surveyed members regarding brachytherapy services offered, safety practices during treatment, quality assurance procedures, and needs to develop safety and training materials.
Methods And Materials: A 22-item survey was sent to ABS membership in early 2019 to physicians, physicists, therapists, nurses, and administrators.
Developing any new radiation oncology program requires planning and analysis of the current state of the facility and its capacity to take on another program. Staff must consider a large number of factors to establish a feasible, safe, and sustainable program. We present a simple and generic outline that lays out the process for developing and implementing a new HDR brachytherapy program in any setting, but with particular emphasis on challenges associated with starting the program in a limited resource setting.
View Article and Find Full Text PDFThe American Brachytherapy Society brachytherapy schools have been pivotal in teaching and evolving the art of brachytherapy over the past decades. Founded in 1995, the schools have consistently provided content for the major disease sites including gynecologic, prostate, and breast with ocular, vascular, head and neck, pediatric, intraluminal, systemic, and intraoperative approaches more selectively addressed. In addition, Physics schools, either coupled with clinical schools or as stand-alone venues, have provided an essential educational component for practicing physicists, a pivotal part of the brachytherapy team.
View Article and Find Full Text PDFThe surface brachytherapy Task Group report number 253 discusses the common treatment modalities and applicators typically used to treat lesions on the body surface. Details of commissioning and calibration of the applicators and systems are discussed and examples are given for a risk-based analysis approach to the quality assurance measures that are necessary to consider when establishing a surface brachytherapy program.
View Article and Find Full Text PDFPurpose: Keratinocyte carcinoma (KC, previously nonmelanoma skin cancer) represents the most common cancer worldwide. While surgical treatment is commonly utilized, various radiation therapy techniques are available including external beam and brachytherapy. As such, the American Brachytherapy Society has created an updated consensus statement regarding the use of brachytherapy in the treatment of KCs.
View Article and Find Full Text PDFThe purpose of this report is to provide detailed guidance on the dosimetry of the INTRABEAM® (Carl Zeiss Medical AG, Jena, Germany) electronic brachytherapy (eBT) system as it stands at the present time. This report has been developed by the members of American Association of Physicists in Medicine (AAPM) Task Group 292 and endorsed by the AAPM. Members of AAPM Task Group 292 on Electronic-Brachytherapy Dosimetry have reviewed pertinent publications and user manuals regarding the INTRABEAM system dosimetry and manufacturer-supplied dose calculation protocols.
View Article and Find Full Text PDFPurpose: The purpose of this study was to provide guidance on quality management for electronic brachytherapy.
Materials And Methods: The task group used the risk-assessment approach of Task Group 100 of the American Association of Physicists in Medicine. Because the quality management program for a device is intimately tied to the procedure in which it is used, the task group first designed quality interventions for intracavitary brachytherapy for both commercial electronic brachytherapy units in the setting of accelerated partial-breast irradiation.
Background: This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy.
Main Findings: The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes.
Purpose: Esteya (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM).
Material And Methods: A multidisciplinary team familiar with the treatment process was formed.
J Contemp Brachytherapy
October 2016
The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR) Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm). The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology.
View Article and Find Full Text PDFAlthough a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved.
View Article and Find Full Text PDFThe American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States.
View Article and Find Full Text PDFPurpose: Nonmelanoma skin cancers (NMSCs) are the most common type of human malignancy. Although surgical techniques are the standard treatment, radiation therapy using photons, electrons, and brachytherapy (BT) (radionuclide-based and electronic) has been an important mode of treatment in specific clinical situations. The purpose of this work is to provide a clinical and dosimetric summary of the use of BT for the treatment of NMSC and to describe the different BT approaches used in treating cutaneous malignancies.
View Article and Find Full Text PDFPurpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry.
View Article and Find Full Text PDFA new electronic brachytherapy unit from Elekta, called Esteya(®), has recently been introduced to the market. As a part of the standards in radiation oncology, an acceptance testing and commissioning must be performed prior to treatment of the first patient. In addition, a quality assurance program should be implemented.
View Article and Find Full Text PDFPurpose: Radiotherapy (RT) has played a significant role in treating non melanoma skin cancer (NMSC). High-dose-rate brachytherapy (HDR-BT) approaches have a paramount relevance due to their adaptability, patient protection, and variable dose fractionation schedules. Several innovative applicators have been introduced to the brachytherapy community.
View Article and Find Full Text PDFPurpose: To analyze the clinical outcome of Kaposi sarcoma skin lesions treated with high-dose-rate (HDR) brachytherapy in patients with a minimum of 2 years of followup.
Methods And Materials: Between February 2006 and July 2008, all patients with Kaposi sarcoma who received (192)Ir HDR brachytherapy using a skin surface applicator were evaluated for clinical response. Responses to treatment and toxicity were scored using standard criteria.
Purpose: To explore additional application of the new Aquarius external laser alignment verification Phantom by LAP (Aq-LAP Phantom) examining geometric accuracy of magnetic resonance images (MRI) commonly used for planning intracranial stereotactic radiation surgery (ICSRS) cases.
Methods: Newly designed external patient alignment lasers were first aligned by the Aq-LAP Phantom at a Siemens Magneton Vario 3T MR unit. The scans were then performed with the T1 Axial 3D MPRAGE protocols with 0.
Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific (192)Ir, (137)Cs, and (60)Co source models.
Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length.