Publications by authors named "Ouajdi Felfoul"

Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref.

View Article and Find Full Text PDF

Magnetic resonance navigation (MRN) offers the potential for real-time steering of drug particles and cells to targets throughout the body. In this technique, the magnetic gradients of an MRI scanner perform image-based steering of magnetically-labelled therapeutics through the vasculature and into tumours. A major challenge of current techniques for MRN is that they alternate between pulse sequences for particle imaging and propulsion.

View Article and Find Full Text PDF

This paper presents 800-m thick, biocompatible sensing skins composed of arrays of pressure sensors. The arrays can be configured to conform to the surface of medical instruments so as to act as disposable sensing skins. In particular, the fabrication of cylindrical geometries is considered here for use on endoscopes.

View Article and Find Full Text PDF

This paper presents a Magnetotactic Bacteria (MTB) navigation and aggregation technique that allows targeting without prior knowledge of the exact architecture of the vessels network. The MTB's active motility combined with magnetotaxism (their ability to swim following the magnetic field direction) offer new possibilities for the delivery of drugs to tumors. Many tumor microenvironment parameters such as the malformed angiogenesis capillaries, the heterogeneous blood flow, and the high interstitial pressure affect the delivery of blood-borne drugs to the tumor.

View Article and Find Full Text PDF

Preliminary experiments showed that MC-1 magnetotactic bacteria (MTB) could be used for the delivery of therapeutic agents to tumoral lesions. Each bacterium can provide a significant thrust propulsion force generated by two flagella bundles exceeding 4pN. Furthermore, a chain of single-domain magnetosomes embedded in the cell allows computer directional control and tracking using a magnetic resonance imaging (MRI) system.

View Article and Find Full Text PDF

This paper investigates the influence of the magnetosome's chain, the motility, and the bacterial cell of MC-1 magnetotactic bacteria (MTB) on the Magnetic Resonance imaging (MRI) contrast. Because of its embedded magnetic nanoparticles, that allow magnetic guidance and imaging contrast generation under MRI, magnetotactic bacteria are being considered for therapeutic drug delivery to tumors. In order to separately investigate the different potential sources of contrast in MRI, we used three samples of MC-1 MTB.

View Article and Find Full Text PDF

Medical nanorobotics exploits nanometer-scale components and phenomena with robotics to provide new medical diagnostic and interventional tools. Here, the architecture and main specifications of a novel medical interventional platform based on nanorobotics and nanomedicine, and suited to target regions inaccessible to catheterization are described. The robotic platform uses magnetic resonance imaging (MRI) for feeding back information to a controller responsible for the real-time control and navigation along pre-planned paths in the blood vessels of untethered magnetic carriers, nanorobots, and/or magnetotactic bacteria (MTB) loaded with sensory or therapeutic agents acting like a wireless robotic arm, manipulator, or other extensions necessary to perform specific remote tasks.

View Article and Find Full Text PDF

Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.

View Article and Find Full Text PDF

Flagellated bacteria used as bio-actuators may prove to be efficient propulsion mechanisms for future hybrid medical nanorobots when operating in the microvasculature. Here, we briefly describe a medical interventional procedure where flagellated bacteria and more specifically MC-1 Magnetotactic Bacteria (MTB) can be used to propel and steer micro-devices and nanorobots under computer control to reach remote locations in the human body. In particular, we show through experimental results the potential of using MTB-tagged robots to deliver therapeutic agents to tumors even the ones located in deep regions of the human body.

View Article and Find Full Text PDF

The possibility of automatically navigating untethered microdevices or future nanorobots to conduct target endovascular interventions has been demonstrated by our group with the computer-controlled displacement of a magnetic sphere along a pre-planned path inside the carotid artery of a living swine. However, although the feasibility of propelling, tracking and performing real-time closed-loop control of an untethered ferromagnetic object inside a living animal model with a relatively close similarity to human anatomical conditions has been validated using a standard clinical Magnetic Resonance Imaging (MRI) system, little information has been published so far concerning the medical and technical protocol used. In fact, such a protocol developed within technological and physiological constraints was a key element in the success of the experiment.

View Article and Find Full Text PDF

A dedicated software architecture for a novel interventional method allowing the navigation of ferromagnetic endovascular devices using a standard real-time clinical MRI system is shown. Through a specially developed software environment integrating a tracking method and a real-time controller algorithm, a clinical 1.5T Siemens Avanto MRI system is adapted to provide new functionality for potential automated interventional applications.

View Article and Find Full Text PDF

A 1.5 mm magnetic sphere was navigated automatically inside the carotid artery of a living swine. The propulsion force, tracking and real-time capabilities of a Magnetic Resonance Imaging (MRI) system were integrated into a closed loop control platform.

View Article and Find Full Text PDF

MC-1 Magnetotactic Bacteria (MTB) are studied for their potential use as bio-carriers for drug delivery. The exploitation of the flagella combined with nanoparticles magnetite or magnetosomes chain embedded in each bacterium and used to change the swimming direction of each MTB through magnetotaxis provide both propulsion and steering in small diameters blood vessels. But for guiding these MTB towards a target, being capable to image these living bacteria in vivo using an existing medical imaging modality is essential.

View Article and Find Full Text PDF

A new magnetic field mapping method in MRI is presented. This technique is ideal for severe inhomogeneities where plane warp cannot be ignored. The present study employs a ferromagnetic ball to create a perturbation within the imaged volume.

View Article and Find Full Text PDF