Bone regeneration is one of the most effective methods for treating bone defects. In this work, tricarboxylic cellulose/sodium alginate loaded with hydroxyapatite (HA) and/or graphene oxide (GO) was coagulated by calcium ions to create beads as scaffolds. In the first, cellulose was oxidized to water-soluble tricarboxylic cellulose (TCC) by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), periodate, and chlorite oxidation.
View Article and Find Full Text PDFBrucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus comprises classical and atypical species, such as and , respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.
View Article and Find Full Text PDFwas isolated a decade ago from wildlife and soil in Europe. Compared to the classical species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915, showed increased macrophage colonization and was non-lethal in murine infections.
View Article and Find Full Text PDFFor aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence . Using an original " model of persistence" consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and Δ strains to identify the RegA-regulon potentially involved in the set-up of persistence.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2017
Carbonic anhydrases have started to emerge as new potential antibacterial targets for several pathogens. Two β-carbonic anhydrases, denominated bsCA I and bsCA II, have been isolated and characterized from the bacterial pathogen Brucella suis, the causative agent of brucellosis or Malta fever. These enzymes have been investigated in detail and a wide range of classical aromatic and heteroaromatic sulfonamides as well as carbohydrate-based compounds have been found to inhibit selectively and efficiently Brucella suis carbonic anhydrases.
View Article and Find Full Text PDFA small series of C-glycosides containing the phenol moiety was tested for the inhibition of the β-class carbonic anhydrases (βCAs, EC 4.2.1.
View Article and Find Full Text PDFHistidinol dehydrogenase (HDH) has been established as a virulence factor for the human pathogen bacterium Brucella suis. Targeting such a virulence factor is a relevant anti-infectious approach as it could decrease the frequency of antibiotic resistance appearance. In this paper, we describe the synthesis of a family of oxo- and thioxo-imidazo[1,5-c]pyrimidines, potential enzyme inhibitors.
View Article and Find Full Text PDFL-Histidinol dehydrogenase from Brucella suis (BsHDH) is an enzyme involved in the histidine biosynthesis pathway which is absent in mammals, thus representing a very interesting target for the development of anti-Brucella agents. In this paper we report the crystallographic structure of a mutated form of BsHDH both in its unbound form and in complex with a nanomolar inhibitor. These studies provide the first structural background for the rational design of potent HDH inhibitors, thus offering new hints for clinical applications.
View Article and Find Full Text PDFBackground: In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions.
View Article and Find Full Text PDFIn murine infections, Brucella microti exhibits an atypical and highly pathogenic behavior resulting in a mortality of 82%. In this study, the possible involvement of the virB type IV secretion system, a key virulence factor of Brucella sp., in this lethal phenotype was investigated.
View Article and Find Full Text PDFBackground: The recent isolation of Brucella microti from the common vole, the red fox, and the soil raises the possibility of an eventual reemergence of brucellosis in Europe. In this work, the pathogenic potential of this new Brucella species in both in vitro and in vivo models of infection was analyzed.
Methods: The ability of B.
Brucella strains are facultative intracellular pathogens that induce chronic diseases in humans and animals. This observation implies that Brucella subverts innate and specific immune responses of the host to develop its full virulence. Deciphering the genes involved in the subversion of the immune system is of primary importance for understanding the virulence of the bacteria, for understanding the pathogenic consequences of infection, and for designing an efficient vaccine.
View Article and Find Full Text PDFBrucella is an invasive organism that multiplies and survives within eukaryotic cells. The brucellae are able to adhere to the surface of cultured epithelial cells, a mechanism that may facilitate penetration and dissemination to other host tissues. However, no adhesins that allow the bacteria to interact with the surface of epithelial cells before migration within polymorphonuclear leukocytes, monocytes and macrophages have been described.
View Article and Find Full Text PDFPhysiological adaptation of intracellular bacteria is critical for timely interaction with eukaryotic host cells. One mechanism of adaptation, the stringent response, is induced by nutrient stress via its effector molecule (p)ppGpp, synthesized by the action of RelA/SpoT homologues. The intracellular pathogen Brucella spp.
View Article and Find Full Text PDFBrucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types.
View Article and Find Full Text PDFThe pathogen Brucella suis resides and multiplies within a phagocytic vacuole of its host cell, the macrophage. The resulting complex relationship has been investigated by the analysis of the set of genes required for virulence, which we call intramacrophagic virulome. Ten thousand two hundred and seventy-two miniTn5 mutants of B.
View Article and Find Full Text PDFThe type IV secretion system, encoded by the virB region, is a key virulence factor for Brucella. The 12 genes of the region form an operon that is specifically induced by phagosome acidification in cells after phagocytosis. We speculate that the system serves to secrete unknown effector molecules, which allow Brucella to pervert the host cell endosomal pathways and to create a novel intracellular compartment in which it can replicate.
View Article and Find Full Text PDFPhagocytes have developed various antimicrobial defense mechanisms to eliminate pathogens. They comprise the oxidative burst, acidification of phagosomes, or fusion of phagosomes with lysosomes. Facultative intracellular bacteria, in return, have developed strategies counteracting the host cell defense, resulting in intramacrophagic survival.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2002
A type IV secretion system similar to the VirB system of the phytopathogen Agrobacterium tumefaciens is essential for the intracellular survival and multiplication of the mammalian pathogen Brucella. Reverse transcriptase-PCR showed that the 12 genes encoding the Brucella suis VirB system form an operon. Semiquantitative measurements of virB mRNA levels by slot blotting showed that transcription of the virB operon, but not the flanking genes, is regulated by environmental factors in vitro.
View Article and Find Full Text PDFPathogens often encounter stressful conditions inside their hosts. In the attempt to characterize the stress response in Brucella suis, a gene highly homologous to Escherichia coli clpB was isolated from Brucella suis, and the deduced amino acid sequence showed features typical of the ClpB ATPase family of stress response proteins. Under high-temperature stress conditions, ClpB of B.
View Article and Find Full Text PDFAnalysis of a Brucella suis 1330 gene fused to a gfp reporter, and identified as being induced in J774 murine macrophage-like cells, allowed the isolation of a gene homologous to nikA, the first gene of the Escherichia coli operon encoding the specific transport system for nickel. DNA sequence analysis of the corresponding B. suis nik locus showed that it was highly similar to that of E.
View Article and Find Full Text PDFBrucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells.
View Article and Find Full Text PDFThe psychoactive component of marijuana, delta9-tetrahydrocannabinol (THC) suppresses different functions of immunocytes, including the antimicrobicidal activity of macrophages. The triggering of cannabinoid receptors of CB1 and CB2 subtypes present on leukocytes may account for these effects. We investigated the influence of specific CB1 or CB2 receptor antagonists (SR141716A and SR144528, respectively) and nonselective CB1/CB2 cannabinoid receptor agonists (CP55,940 or WIN 55212-2) on macrophage infection by Brucella suis, an intracellular gram-negative bacteria.
View Article and Find Full Text PDF