This Guest Editorial introduces the special collection entitled "Frontiers in Chemical Bonding and Aromaticity" as a tribute to Professor Miquel Solà on the occasion of his 60th birthday.
View Article and Find Full Text PDF3,4-Dimethylenecyclobutene (DMCB) is an unusual isomer of benzene. Motivated by recent synthetic progress to substituted derivatives of this scaffold, we carried out a theoretical and computational analysis with a particular focus on the extent of (anti)aromatic character in the lowest excited states of different multiplicities. We found that the parent DMCB is non-aromatic in its singlet ground state (S), lowest triplet state (T), and lowest singlet excited state (S), while it is aromatic in its lowest quintet state (Q) as this state is represented by a triplet multiplicity cyclobutadiene (CBD) ring and two uncoupled same-spin methylene radicals.
View Article and Find Full Text PDFMonobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally.
View Article and Find Full Text PDFThe field of aromaticity has grown five-fold in the last two decades as revealed by Merino in their Perspective "Aromaticity: Quo Vadis" where they ask where the field is heading (, 2023, https://doi.org/10.1039/D2SC04998H).
View Article and Find Full Text PDFA transition from fossil- to bio-based hydrocarbon fuels is required to reduce greenhouse gas emissions; yet, traditional biomass cultivation for biofuel production competes with food production and impacts negatively on biodiversity. Recently, we reported a proof-of-principle study of a two-step photobiological-photochemical approach to kerosene biofuels in which a volatile hydrocarbon (isoprene) is produced by photosynthetic cyanobacteria, followed by its photochemical dimerization into C hydrocarbons. Both steps can utilize solar irradiation.
View Article and Find Full Text PDFGain of aromaticity or relief of antiaromaticity along a reaction path are important factors to consider in mechanism studies. Analysis of such changes along potential energy surfaces has historically focused on reactions in the electronic ground state (S ), but can also be used for excited states. In the lowest ππ* states, the electron counts for aromaticity and antiaromaticity follow Baird's rule where 4n π-electrons indicate aromaticity and 4n+2 π-electrons antiaromaticity.
View Article and Find Full Text PDFSeveral fully π-conjugated macrocycles with puckered or cage-type structures were recently found to exhibit aromatic character according to both experiments and computations. We examine their electronic structures and put them in relation to 3D-aromatic molecules (, -boranes) and to 2D-aromatic polycyclic aromatic hydrocarbons. Using qualitative theory combined with quantum chemical calculations, we find that the macrocycles explored hitherto should be described as 2D-aromatic with three-dimensional molecular structures (abbr.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
1,3,2,4-Diazadiboretidine, an isoelectronic heteroanalogue of cyclobutadiene, is an interesting chemical species in terms of comparison with the carbon system, whereas its properties have never been investigated experimentally. According to Baird's rule, Hückel antiaromatic cyclobutadiene acquires aromaticity in the lowest triplet state. Here we report experimental and theoretical studies on the ground- and excited-state antiaromaticity/aromaticity as well as the photophysical properties of an isolable 1,3,2,4-diazadiboretidine derivative.
View Article and Find Full Text PDFThe Watson-Crick A·T and G·C base pairs are not only electronically complementary, but also photochemically complementary. Upon UV irradiation, DNA base pairs undergo efficient excited-state deactivation through electron driven proton transfer (EDPT), also known as proton-coupled electron transfer (PCET), at a rate too fast for other reactions to take place. Why this process occurs so efficiently is typically reasoned based on the oxidation and reduction potentials of the bases in their electronic ground states.
View Article and Find Full Text PDFThe exact energies of the lowest singlet and triplet excited states in organic chromophores are crucial to their performance in optoelectronic devices. The possibility of utilizing singlet fission to enhance the performance of photovoltaic devices has resulted in a wide demand for tuneable, stable organic chromophores with wide S-T energy gaps (>1 eV). Cibalackrot-type compounds were recently considered to have favorably positioned excited state energies for singlet fission, and they were found to have a degree of aromaticity in the lowest triplet excited state (T).
View Article and Find Full Text PDFPro-aromatic molecules have higher-energy diradicaloid states that are significantly influenced by resonance structures in which conjugated rings take on Hückel-aromatic character. Recently, it has been argued that there are also pro-aromatic molecules that adopt central units with 4nπ-electron Baird-aromatic character in the T state, although detailed analysis suggests that these compounds are better labelled as T Hückel-Baird hybrid molecules where Hückel-aromaticity dominates. Herein, we consider a series of symmetrically substituted conjugated rings with potential Baird aromaticity in the lowest excited triplet and singlet states.
View Article and Find Full Text PDFThe aromaticity of cyclic 4π-electron molecules in their first ππ* triplet state (T), labeled Baird aromaticity, has gained growing attention in the past decade. Here we explore computationally the limitations of T state Baird aromaticity in macrocyclic compounds, 's, which are cyclic oligomers of four different monocycles (M = -phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 π-electrons in their main conjugation paths we find that for their T states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries.
View Article and Find Full Text PDFBright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum.
View Article and Find Full Text PDFBenzene exhibits a rich photochemistry which can provide access to complex molecular scaffolds that are difficult to access with reactions in the electronic ground state. While benzene is aromatic in its ground state, it is antiaromatic in its lowest ππ* excited states. Herein, we clarify to what extent relief of excited-state antiaromaticity (ESAA) triggers a fundamental benzene photoreaction: the photoinitiated nucleophilic addition of solvent to benzene in acidic media leading to substituted bicyclo[3.
View Article and Find Full Text PDFAccording to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography.
View Article and Find Full Text PDFSinglet exciton fission photovoltaic technology requires chromophores with their lowest excited states arranged so that 2(T) < (S) and (S) < (T). Herein, qualitative theory and quantum chemical calculations are used to develop explicit strategies on how to use Baird's 4 rule on excited-state aromaticity, combined with Hückel's 4 + 2 rule for ground-state aromaticity, to tailor new potential chromophores for singlet fission. We first analyze the (T), (S), and (T) of benzene and cyclobutadiene (CBD) as excited-state antiaromatic and aromatic archetypes, respectively, and reveal that CBD fulfills the criteria on the state ordering for a singlet fission chromophore.
View Article and Find Full Text PDFThe implementation of electronics applications based on molecular electronics devices is hampered by the difficulty of placing a single or a few molecules with application-specific electronic properties in between metallic nanocontacts. Here, we present a novel method to fabricate 20 nm sized nanomolecular electronic devices (nanoMoED) using a molecular place-exchange process of nonconductive short alkyl thiolates with various short chain conductive oligomers. After the successful place-exchange with short-chain conjugated oligomers in the nanoMoED devices, a change in device resistance of up to four orders of magnitude for 4,4'-biphenyldithiol (BPDT), and up to three orders of magnitude for oligo phenylene-ethynylene (OPE), were observed.
View Article and Find Full Text PDFSelenocompounds (SeCs) are promising therapeutic agents for a wide range of diseases including cancer. The treatment results are heterogeneous and dependent on both the chemical species and the concentration of SeCs. Moreover, the mechanisms of action are poorly revealed, which most probably is due to the detection methods where the quantification is based on the total selenium as an element.
View Article and Find Full Text PDFCompounds with dibenzannelated heterocycles with eight π-electrons are found in a range of applications. These molecules often adopt a bent structure in the ground state (S ) but can become planar in the first excited states (S and T ) because of the cyclically conjugated 4nπ central ring, which fulfils the requirements for excited state aromaticity. We report on a quantum chemical investigation of the aromatic character in the S and T states of dibenzannelated seven- and six-membered heterocycles with one, two, or three heteroatoms in the 8π-electron ring.
View Article and Find Full Text PDFN-acetylcysteine amide (NACA) is the amide derivative of N-acetylcysteine (NAC) that is rapidly converted to NAC after systemic administration. It has emerged as a promising thiol antioxidant for multiple indications; however, the pharmacokinetic property is yet unclear due to lack of an accurate quantification method. The present investigation aimed to develop an analytical method for simultaneous quantification of NACA and NAC in plasma.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 + 2] π-aromatic in the ground state, become [4 + 2] π-antiaromatic in the first ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity.
View Article and Find Full Text PDF