Stable cell-like multisomes encapsulating the chemical oscillator Belousov-Zhabotinsky were engineered and organized in a linear network of diffusively-coupled chemical oscillators by using microfluidics. The multi-compartmentalization and the spatial configuration resulted in a new global synchronization scenario. After an initial induction interval, all the oscillators started to pulsate in phase with a halved period with respect to the natural one.
View Article and Find Full Text PDFCompartmentalized in liposome arrays, the Belousov-Zhabotinsky (BZ) oscillatory reaction might represent a good model for biochemical networks. In order to engineer such liposomes, we used small-angle X-ray scattering (SAXS) to study the effect of individual BZ reactant as well as of the entire BZ mixture on the structural properties of lipid layer(s) formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipids in aqueous media. These properties were compared with those of lipid layers doped with myristic acid (Myr-A), sodium tetradecyl sulfate (STS), and cholesterol (CHOL).
View Article and Find Full Text PDFWe performed a longitudinal study (repeated observations of the same sample over time) to investigate both the composition and structure of temporal changes of bacterial community composition in soil mesocosms, subjected to three different treatments (water and 5 or 25 mg kg(-1) of dried soil Cd(2+)). By analogy with the pan genome concept, we identified a core bacteriome and an accessory bacteriome. Resident taxa were assigned to the core bacteriome, while occasional taxa were assigned to the accessory bacteriome.
View Article and Find Full Text PDFWe experimentally discriminated and qualitatively-quantitatively characterized the extracellular fraction of a forest soil DNA pool. We sequentially extracted and classified the components of extracellular DNA by its strength of interaction with soil colloids as: (1) extractable in water, free in the extracellular soil environment or adsorbed on soil colloids; and as (2) extractable in alkaline buffer after previous extraction in water, bound on soil colloids. The comparative molecular analysis (fluorometer, gel electrophoresis, genetic fingerprinting) of directly and sequentially extracted extracellular DNA revealed quantitative and qualitative differences, also in terms of genetic information about microbial communities.
View Article and Find Full Text PDF