Publications by authors named "Otting G"

The solution structure of the N-terminal DNA-binding domain of the P22 c2 repressor (residues 1 to 76) was determined by nuclear magnetic resonance (NMR) spectroscopy. The structure determination was based on nearly complete sequence-specific resonance assignments for 1H, 13C and 15N, and tables of the chemical shifts for all three nuclei are included here. A group of 20 conformers was calculated from the NMR constraints using the program DIANA, and energy-minimized using an implementation of the AMBER force field in the program OPAL.

View Article and Find Full Text PDF

The nuclear magnetic resonance (NMR) solution structure of a complex formed by the mutant Antennapedia homeodomain with Cys39 replaced by Ser, Antp(C39S), and a 14 base-pair DNA duplex containing the BS2 operator sequence was determined using uniform 13C and 15N-labeling of the protein. Two-dimensional nuclear Overhauser enhancement spectroscopy ([1H,1H]NOESY) with 15N(omega 2)-half-filter and 13C(omega 1, omega 2)-double-half-filter, and three-dimensional heteronuclear-correlated [1H,1H]NOESY yielded a total of 855 intramolecular NOE upper distance constraints in the homeodomain, 151 upper distance constraints within the DNA duplex, and 39 intermolecular protein-DNA upper distance constraints. These data were used as the input for the structure calculation with simulated annealing followed by molecular dynamics in a water bath and energy refinement.

View Article and Find Full Text PDF

A 1:1 complex formed by the mutant Antennapedia(C39S) homeodomain and a 14 base-pair DNA duplex (molecular weight approximately 18,000) was prepared in which the protein was uniformly 13C-labeled. Using two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy with 13C(omega 1, omega 2)-double-half-filter and three-dimensional 13C-correlated NOE spectroscopy, nearly complete sequence-specific resonance assignments were obtained for both the protein and the DNA in the complex. On this basis conformational constraints needed for a three-dimensional structure determination were collected.

View Article and Find Full Text PDF

A 1 ns trajectory from a molecular dynamics study of 1.4 ns total length was used for a detailed analysis of the residence times of water molecules located near 227 selected bovine pancreatic trypsin inhibitor (BPTI) atoms. The simulation was performed using the GROMOS force field, with apolar hydrogen atoms treated as united atoms, and the SPC/E water model.

View Article and Find Full Text PDF

The three-dimensional backbone fold of a polypeptide fragment from the rat LFB1/HNF1 transcription factor was determined by nuclear magnetic resonance (NMR) spectroscopy in solution. This fragment contains an amino acid sequence that is approximately 22% homologous to the well known homeodomains, but which contains 81 amino acid residues as compared with 60 residues in 'typical' homeodomains. For the present studies we used a recombinant 99 amino acid polypeptide containing this sequence in positions 10-90, which was uniformly labelled with 15N and also doubly labelled with 15N and 13C.

View Article and Find Full Text PDF

Two conformational isomers were observed in the 1H nuclear magnetic resonance (NMR) spectra of the basic pancreatic trypsin inhibitor (BPTI) and of a mutant protein with Gly 36 replaced by Ser, BPTI(G36S). The less abundant isomer differs from the major conformation by different chirality of the Cys 14-Cys 38 disulfide bond. In BPTI, the population of the minor conformer increases from about 1.

View Article and Find Full Text PDF

Nuclear Overhauser effects (NOE) were measured between water protons and protons of the glutamic acid side chain of the bicyclic decapeptide c-[Arg-Arg-Cys-Asn-Ala-Glu-Ala-Cys-Lys-Gly] in aqueous solution. Positive NOEs were observed between the gamma CH2 group of Glu and the water resonance, with similar NOE intensities at pH 2.0 and pH 6.

View Article and Find Full Text PDF

Conformational rate processes in aqueous solutions of uniformly 15N-labeled pancreatic trypsin inhibitor (BPTI) at 36 degrees C were investigated by measuring the rotating frame relaxation times of the backbone 15N spins as a function of the spin-lock power. Two different intramolecular exchange processes were identified. A first local rate process involved the residues Cys38 and Arg39, had a correlation time of about 1.

View Article and Find Full Text PDF

The residence times of individual hydration water molecules in the major and minor grooves of DNA were measured by nuclear magnetic resonance (NMR) spectroscopy in aqueous solutions of d-(CGCGAATTCGCG)2 and d-(AAAAATTTTT)2. The experimental observations were nuclear Overhauser effects (NOE) between water protons and the protons of the DNA. The positive sign of NOEs with the thymine methyl groups shows that the residence times of the hydration water molecules near these protons in the major groove of the DNA must be shorter than about 500 ps, which coincides with the behavior of surface hydration water in peptides and proteins.

View Article and Find Full Text PDF

The secondary structure of an N-terminally elongated Antennapedia (Antp) homeodomain (HD) polypeptide containing residues -14 to 67, where residues 1-60 constitute the HD, has been determined by NMR in solution. This polypeptide contains the conserved motif -Tyr-Pro-Trp-Met- (YPWM) at positions -9 to -6. Despite the hydrophobic nature of this tetrapeptide motif, the N-terminal arm consisting of residues -14 to 6 is flexibly disordered, and the well-defined part of the HD structure with residues 7-59 is indistinguishable from that of the shorter Antp HD polypeptide (where positions 0, 1, and 67 are methionine, arginine, and glycine, respectively).

View Article and Find Full Text PDF

Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI).

View Article and Find Full Text PDF

Biosynthetically directed fractional incorporation of 13C into proteins results in nonrandom 13C-labeling patterns that can be investigated by analysis of the 13C-13C scalar coupling fine structures in heteronuclear 13C-1H or homonuclear 13C-13C correlation experiments. Previously this approach was used for obtaining stereospecific 1H and 13C assignments of the diastereotopic methyl groups of valine and leucine. In the present paper we investigate to what extent the labeling patterns are characteristic for other individual amino acids or groups of amino acids, and can thus be used to support the 1H spin-system identifications.

View Article and Find Full Text PDF

Improved experimental schemes for the recently introduced J-modulated [15N,1H]-correlation experiment for measurements of the homonuclear amide proton-C alpha proton vicinal coupling constants, 3JHN alpha, in uniformly 15N-labeled proteins are described, and a nonlinear fit procedure is presented for quantitative evaluation of 3JHN alpha. The method was first tested with the N-terminal DNA-binding domain of the 434 repressor (M = 7.3 kDa), where at 13 degrees C precise values of 3JHN alpha in the range 2.

View Article and Find Full Text PDF

Proton nuclear magnetic resonance was used to study individual molecules of hydration water bound to the protein basic pancreatic trypsin inhibitor (BPTI) and to the nonapeptide oxytocin in aqueous solution. The experimental observations are nuclear Overhauser effects (NOE) between protons of individual amino acid residues of the protein and those of hydration water. These NOEs were recorded by two-dimensional (2D) and three dimensional (3D) NOE spectroscopy (NOESY) in the laboratory frame, and by the corresponding experiments in the rotating frame (ROESY).

View Article and Find Full Text PDF

High-resolution proton nuclear magnetic resonance studies of protein hydration in aqueous solution show that there are two qualitatively different types of hydration sites. A well-defined, small number of water molecules in the interior of the protein are in identical locations in the crystal structure and in solution, and their residence times are in the range from about 10(-2) to 10(-8) second. Hydration of the protein surface in solution is by water molecules with residence times in the subnanosecond range, even when they are located in hydration sites that contain well-ordered water in the x-ray structures of protein single crystals.

View Article and Find Full Text PDF

Homonuclear 3D 1H NOESY-TOCSY and 3D 1H ROESY-TOCSY experiments were used to resolve and assign nuclear Overhauser effect (NOE) cross peaks between the water signal and individual polypeptide proton resonances in H2O solutions of the basic pancreatic trypsin inhibitor. Combined with a novel, robust water-suppression technique, positive and negative intermolecular NOEs were detected at 4 degrees C. The observation of positive NOEs between water protons and protein protons enables more precise estimates of the very short residence times of the water molecules in the hydration sites on the protein surface.

View Article and Find Full Text PDF

The structure of a mutant Antennapedia homeodomain, Antp(C39----S), from Drosophila melanogaster was determined using a set of new programs introduced in the accompanying paper. An input dataset of 957 distance constraints and 171 dihedral angle constraints was collected using two-dimensional n.m.

View Article and Find Full Text PDF

The three-dimensional structure of the homeodomain, as determined by nuclear magnetic resonance spectroscopy, reveals the presence of a helix-turn-helix motif, similar to the one found in prokaryotic gene regulatory proteins. Isolated homeodomains bind with high affinity to specific DNA sequences. Thus, the structure-function relationship is highly conserved in evolution.

View Article and Find Full Text PDF

The 1:1 complex of the mutant Antp(C39----S) homeodomain with a 14 bp DNA fragment corresponding to the BS2 binding site was studied by nuclear magnetic resonance (NMR) spectroscopy in aqueous solution. The complex has a molecular weight of 17,800 and its lifetime is long compared with the NMR chemical shift time scale. Investigations of the three-dimensional structure were based on the use of the fully 15N-labelled protein, two-dimensional homonuclear proton NOESY with 15N(omega 2) half-filter, and heteronuclear three-dimensional NMR experiments.

View Article and Find Full Text PDF

The determination of the three-dimensional structure of the Antennapedia homeodomain from Drosophila in solution is described. The techniques used are 1H nuclear magnetic resonance spectroscopy for the data collection, and calculation of the protein structure with the program DISMAN followed by restrained energy minimization with a modified version of the program AMBER. A group of 19 conformers characterizes a well-defined structure for residues 7 to 59, with an average root-mean-square distance from the backbone atoms of 0.

View Article and Find Full Text PDF

The complex formed between the anticancer drug 4-[p-[p-(4-quinolylamino)benzamido]anilino]pyridine (SN 6999) and the decadeoxyribonucleoside nonaphosphate d-(GCATTAATGC)2 was investigated using two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) with a 13C(omega 1)-half-filter. The two quaternary methyl groups in SN 6999 had been labeled with 13C for these experiments. The simplified subspectra of [1H,1H]-NOESY obtained with this procedure greatly facilitate the identification and assignment of intermolecular NOEs.

View Article and Find Full Text PDF

The structure of the Antennapedia homeodomain from Drosophila melanogaster was determined by nuclear magnetic resonance spectroscopy in solution. It includes three well-defined helices (residues 10-21, 28-38, and 42-52) and a more flexible fourth helix (residues 53-59). Residues 30-50 form a helix-turn-helix motif virtually identical to those observed in various prokaryotic repressors.

View Article and Find Full Text PDF

Stereospecific 1H and 13C NMR assignments were made for the two diastereotopic methyl groups of the 14 valyl and leucyl residues in the DNA-binding domain 1-69 of the 434 repressor. These results were obtained with a novel method, biosynthetically directed fractional 13C labeling, which should be quite widely applicable for peptides and proteins. The method is based on the use of a mixture of fully 13C-labeled and unlabeled glucose as the sole carbon source for the biosynthetic production of the protein studied, knowledge of the independently established stereoselectivity of the pathways for valine and leucine biosynthesis, and analysis of the distribution of 13C labels in the valyl and leucyl residues of the product by two-dimensional heteronuclear NMR correlation experiments.

View Article and Find Full Text PDF