Publications by authors named "Ottewell K"

Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura).

View Article and Find Full Text PDF

Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system.

View Article and Find Full Text PDF

Using genetic information to develop and implement conservation programs is vital for maintaining biodiversity and ecosystem resilience. Evaluation of the genetic variability within and among remnant populations can inform management of both natural and translocated populations to maximise species' adaptive potential, mitigate negative impacts of inbreeding, and subsequently minimise risk of extinction. Here we use reduced representation sequencing to undertake a genetic assessment of the golden bandicoot (Isoodon auratus), a threatened marsupial endemic to Australia.

View Article and Find Full Text PDF

Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices.

View Article and Find Full Text PDF

Conservation translocations have become increasingly popular for 'rewilding' areas that have lost their native fauna. These multispecies translocations are complex and need to consider the requirements of each individual species as well as the influence of likely interactions among them. The Dirk Hartog Island National Park Ecological Restoration Project, , aspires to restore ecological function to Western Australia's largest island.

View Article and Find Full Text PDF

Landscape genetics is increasingly transitioning away from microsatellites, with single nucleotide polymorphisms (SNPs) providing increased resolution for detecting patterns of spatial-genetic structure. This is particularly pertinent for research in arid-zone mammals due to challenges associated with unique life history traits, such as boom-bust population dynamics and long-distance dispersal capacities. Here, we provide a case study comparing SNPs versus microsatellites for testing three explicit landscape genetic hypotheses (isolation-by-distance, isolation-by-barrier, and isolation-by-resistance) in a suite of small, arid-zone mammals in the Pilbara region of Western Australia.

View Article and Find Full Text PDF

Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore.

View Article and Find Full Text PDF

Landscape-scale conservation that considers metapopulation dynamics will be essential for preventing declines of species facing multiple threats to their survival. Toward this end, we developed a novel approach that combines occurrence records, spatial-environmental data, and genetic information to model habitat, connectivity, and patterns of genetic structure and link spatial attributes to underlying ecological mechanisms. Using the threatened northern quoll (Dasyurus hallucatus) as a case study, we applied this approach to address the need for conservation decision-making tools that promote resilient metapopulations of this threatened species in the Pilbara, Western Australia, a multiuse landscape that is a hotspot for biodiversity and mining.

View Article and Find Full Text PDF

Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species.

View Article and Find Full Text PDF

The ghost bat (Macroderma gigas) is endemic to Australia but is under threat, with scarce information available on the genetic health of remaining populations. Here, we develop molecular assays for microsatellite genotyping and molecular sexing of non-invasive samples as a genetic monitoring tool to identify individuals, measure genetic diversity and investigate spatial and temporal patterns of habitat use by ghost bats. We identified novel microsatellites through high-throughput sequencing on the Illumina MiSeq platform.

View Article and Find Full Text PDF

Small and isolated populations are subject to the loss of genetic variation as a consequence of inbreeding and genetic drift, which in turn, can affect the fitness and long-term viability of populations. Translocations can be used as an effective conservation tool to combat this loss of genetic diversity through establishing new populations of threatened species, and to increase total population size. Releasing animals from multiple genetically diverged sources is one method to optimize genetic diversity in translocated populations.

View Article and Find Full Text PDF

The use of multiple source populations provides a way to maximise genetic variation and reduce the impacts of inbreeding depression in newly established translocated populations. However, there is a risk that individuals from different source populations will not interbreed, leading to population structure and smaller effective population sizes than expected. Here, we investigate the genetic consequences of mixing two isolated, morphologically distinct island populations of boodies () in a translocation to mainland Australia over three generations.

View Article and Find Full Text PDF

Landscape topography and the mobility of individuals will have fundamental impacts on a species' population structure, for example by enhancing or reducing gene flow and therefore influencing the effective size and genetic diversity of the population. However, social organization will also influence population genetic structure. For example, species that live and breed in cooperative groups may experience high levels of inbreeding and strong genetic drift.

View Article and Find Full Text PDF

Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long-standing research priority.

View Article and Find Full Text PDF

The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data.

View Article and Find Full Text PDF

Environmental disturbances, both natural and anthropogenic, have the capacity to substantially impact animal behavior and abundance, which can in turn influence patterns of genetic diversity and gene flow. However, little empirical information is available on the nature and degree of such changes due to the relative rarity of longitudinal genetic sampling of wild populations at appropriate intervals. Addressing this knowledge gap is therefore of interest to evolutionary biologists, policy makers, and managers.

View Article and Find Full Text PDF

Habitat loss and fragmentation may impact animal-mediated dispersal of seed and pollen, and a key question is how the genetic attributes of plant populations respond to these changes. Theory predicts that genetic diversity may be less sensitive to such disruptions in the short term, whereas inbreeding and genetic structure may respond more strongly. However, results from studies to date vary in relation to species, context and the parameter being assessed, triggering calls for more empirical studies, especially from the tropics, where plant-animal dispersal mutualisms are both disproportionately common and at risk.

View Article and Find Full Text PDF

Seedbanks are expected to buffer populations against disturbances, such as fire, that could alter the genetic composition of smaller, ephemeral adult populations. However, seedling genotypes may be influenced by the spatially heterogeneous nature of both the seedbank and the disturbance (for example, germination may vary with local disturbance) and also by selection acting on germination and post-germination performance. We used microsatellite-DNA surveys of seedlings emerging from the soil-stored seedbanks of Grevillea macleayana after wildfire to compare diversity and spatial structure in seedlings and adults, and through resampling of the seedling data set, to determine whether the resultant adult population reflected the effects of selection or random seedling mortality.

View Article and Find Full Text PDF

Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility.

View Article and Find Full Text PDF

Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study.

View Article and Find Full Text PDF

Few studies have documented the impacts of habitat fragmentation on plant mating patterns together with fitness. Yet, these processes require urgent attention to better understand the impact of contemporary landscape change on biodiversity and for guiding native plant genetic resource management. We examined these relationships using the predominantly insect-pollinated Eucalyptus socialis.

View Article and Find Full Text PDF

Pollen dispersal shapes the local genetic structure of plant populations and determines the opportunity for local selection and genetic drift, but has been well studied in few animal-pollinated plants in tropical rainforests. Here, we characterise pollen movement for an insect-pollinated Neotropical canopy palm, Oenocarpus bataua, and relate these data to adult mating system and population genetic structure. The study covers a 130-ha parcel in which all adult trees (n=185) were mapped and genotyped at 12 microsatellite loci, allowing us to positively identify the source tree for 90% of pollination events (n=287 of 318 events).

View Article and Find Full Text PDF

The influence of habitat fragmentation on mating patterns and progeny fitness in trees is critical for understanding the long-term impact of contemporary landscape change on the sustainability of biodiversity. We examined the relationship between mating patterns, using microsatellites, and fitness of progeny, in a common garden trial, for the insect-pollinated big-leaf mahogany, Swietenia macrophylla King, sourced from forests and isolated trees in 16 populations across Central America. As expected, isolated trees had disrupted mating patterns and reduced fitness.

View Article and Find Full Text PDF

Background And Aims: Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances.

View Article and Find Full Text PDF