The challenging task of designing biopharmaceutical downstream processes is initially to select the type of unit operations, followed by optimizing their operating conditions. For complex flowsheet optimizations, the strategy becomes crucial in terms of duration and outcome. In this study, we compared three optimization strategies, namely, simultaneous, top-to-bottom, and superstructure decomposition.
View Article and Find Full Text PDFOptimizing a biopharmaceutical chromatographic purification process is currently the greatest challenge during process development. A lack of process understanding calls for extensive experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic or data driven modeling, enhance the understanding, allowing more cost-effective and time efficient process optimization.
View Article and Find Full Text PDFPurification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified.
View Article and Find Full Text PDFMechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively.
View Article and Find Full Text PDFProtein-based biopharmaceuticals require high purity before final formulation to ensure product safety, making process development time consuming. Implementation of computational approaches at the initial stages of process development offers a significant reduction in development efforts. By preselecting process conditions, experimental screening can be limited to only a subset.
View Article and Find Full Text PDFThe monoclonal antibody (mAb) industry is becoming increasingly digitalized. Digital twins are becoming increasingly important to test or validate processes before manufacturing. High-Throughput Process Development (HTPD) has been progressively used as a tool for process development and innovation.
View Article and Find Full Text PDFThe implementation of continuous processing in the biopharmaceutical industry is hindered by the scarcity of process analytical technologies (PAT). To monitor and control a continuous process, PAT tools will be crucial to measure real-time product quality attributes such as protein aggregation. Miniaturizing these analytical techniques can increase measurement speed and enable faster decision-making.
View Article and Find Full Text PDFAn optimal purification process for biopharmaceutical products is important to meet strict safety regulations, and for economic benefits. To find the global optimum, it is desirable to screen the overall design space. Advanced model-based approaches enable to screen a broad range of the design-space, in contrast to traditional statistical or heuristic-based approaches.
View Article and Find Full Text PDFMass-spectrometry-based proteomics is increasingly employed to monitor purification processes or to detect critical host cell proteins in the final drug substance. This approach is inherently unbiased and can be used to identify individual host cell proteins without prior knowledge. In process development for the purification of new biopharmaceuticals, such as protein subunit vaccines, a broader knowledge of the host cell proteome could promote a more rational process design.
View Article and Find Full Text PDFThe lack of process analytical technologies able to provide real-time information and process control over a biopharmaceutical process has long impaired the transition to continuous biomanufacturing. For the monoclonal antibody (mAb) production, aggregate formation is a major critical quality attribute (CQA) with several known process parameters (i.e.
View Article and Find Full Text PDFParkinson's Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L.
View Article and Find Full Text PDFA major challenge in the transition to continuous biomanufacturing is the lack of process analytical technology (PAT) tools which are able to collect real-time information on the process and elicit a response to facilitate control. One of the critical quality attributes (CQAs) of interest during monoclonal antibodies production is aggregate formation. The development of a real-time PAT tool to monitor aggregate formation is then crucial to have immediate feedback and process control.
View Article and Find Full Text PDFBiopharmaceuticals are becoming increasingly important in modern healthcare. Monoclonal antibodies (mAb) are one of the most widely used therapeutic proteins and are important for the treatment of cancer and autoimmune diseases, among others. After cell culture there are still large amounts of other impurities (e.
View Article and Find Full Text PDFThe safety requirements for vaccines are extremely high since they are administered to healthy people. For that reason, vaccine development is time-consuming and very expensive. Reducing time-to-market is key for pharmaceutical companies, saving lives and money.
View Article and Find Full Text PDFContinuous manufacturing is an indicator of a maturing industry, as can be seen by the example of the petrochemical industry. Patent expiry promotes a price competition between manufacturing companies, and more efficient and cheaper processes are needed to achieve lower production costs. Over the last decade, continuous biomanufacturing has had significant breakthroughs, with regulatory agencies encouraging the industry to implement this processing mode.
View Article and Find Full Text PDFThe enzymatic conversion of lignocellulosic material to sugars can provide a carbon source for the production of energy (fuels) and a wide range of renewable products. However, the efficiency of this conversion is impaired due to product (sugar) inhibition. Even though several studies investigate how to overcome this challenge, concepts on the process to conduct the hydrolysis are still scarce in literature.
View Article and Find Full Text PDFWhile packed bed chromatography, known as conventional chromatography, has been serving the biopharmaceutical industry for decades as the bioseparation method of choice, alternative approaches are likely to take an increasing leading role in the next few years. The high number of new biological drugs under development, and the need to make biopharmaceuticals widely accessible, has been driving the academia and industry in the quest of anything but conventional chromatography approaches. In this perspective paper, these alternative approaches are discussed in view of current and future challenges in the downstream processing field.
View Article and Find Full Text PDFAqueous two-phase systems (ATPS) can be applied to enzymatic reactions that are affected by product inhibition. In the biorefinery context, sugars inhibit the cellulolytic enzymes in charge of converting the biomass. Here, we present a strategy to select an ATPS (formed by polymer and salt) that can separate sugar and enzymes.
View Article and Find Full Text PDFIn this study, we developed a microfluidics method, using a so-called H-cell microfluidics device, for the determination of protein diffusion coefficients at different concentrations, pHs, ionic strengths, and solvent viscosities. Protein transfer takes place in the H-cell channels between two laminarly flowing streams with each containing a different initial protein concentration. The protein diffusion coefficients are calculated based on the measured protein mass transfer, the channel dimensions, and the contact time between the two streams.
View Article and Find Full Text PDFEdible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts.
View Article and Find Full Text PDFLiquid-liquid extraction (LLE) can be an effective strategy for the purification of polyphenols from a fermentation broth. However, solvents need to be chosen to ensure high extraction capacity and selectivity. For that purpose, a systematic study is here presented, where the partition of different polyphenols-naringin, naringenin, -coumaric acid, and -resveratrol-was measured in different solvents and solvent mixtures and described using the semipredictive NRTL-SAC model.
View Article and Find Full Text PDFJ Chem Technol Biotechnol
July 2018
Background: Preferential crystallization is a common technique used in the purification of enantiomers, proving that crystallization may also be applied to the purification of very similar molecules by seeding the solution with the desired compound. Nonetheless, its application to other organic molecules is less widely documented in the literature. Knowing that chemically related polyphenols are generally co-produced by fermentation and their purification can be too expensive for their market value, this technique may contribute to developing a downstream process with less expensive steps.
View Article and Find Full Text PDFJ Chem Technol Biotechnol
July 2018
Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial product concentration/purification process. Several mathematical models have been put forward to describe its operation. However, none of the models developed specifically for EBA allows simultaneous prediction of bed hydrodynamics, mass transfer/adsorption and (unwanted) interactions and fouling.
View Article and Find Full Text PDFAdsorption can be an effective way of purifying polyphenols from complex mixtures. However, polyphenols may be present in small concentrations, making it difficult to selectively adsorb them onto standard hydrophobic resins and obtain appreciable adsorption. In this work, nonfunctionalized hydrophobic resins (Amberlite XAD-7HP, XAD-16) are compared with functionalized resins with imidazole (Biotage RENSA PX) and pyridine (RENSA PY) in terms of capacity and selectivity toward -coumaric acid, -resveratrol, and naringenin.
View Article and Find Full Text PDF