Targeted vasopeptide therapies have significantly advanced the management of pulmonary arterial hypertension (PAH). However, due to insufficient preclinical evidence regarding the involvement of the endothelin-1 (ET-1) pathway in chronic thromboembolic pulmonary hypertension (CTEPH) pathophysiology, the potential of ET-1 receptor antagonism in treating CTEPH remains uncertain. In this study, we investigated the role of the ET-1 pathway in CTEPH microvasculopathy using a multifaceted approach.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2024
Hepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. This study aimed to investigate the involvement of BMP-9 in human and experimental HPS.
View Article and Find Full Text PDFBackground: Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from patients with pulmonary arterial hypertension (PAH) and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in ObR-b overexpression in PAH.
Methods: We performed in situ and in vitro experiments in human lung specimens and isolated PA-SMCs combined with 2 different in vivo models in rodents and we generated a mouse with an inducible USP8 deletion specifically in smooth muscles.
Background: Uncontrolled T-cell activation plays a key role in systemic sclerosis (SSc). Arsenic trioxide (ATO) has immunological effects and has demonstrated potential in preclinical SSc models. In this study, we assessed the efficacy of ATO in Fra2 transgenic (Fra2) mice, which develop severe vascular remodeling of pulmonary arterioles and nonspecific interstitial pneumonia-like lung disease, closely resembling human SSc-associated pulmonary hypertension, therefore partially resembling to the SSc human disease.
View Article and Find Full Text PDFObjective: Our goal was to study the tolerance and efficacy of two B cell depletion strategies, including one with CD19-targeted chimeric antigen receptor (CAR) T cells, in a preclinical model mimicking the severe lung damages observed in systemic sclerosis.
Methods: B cell depletion strategies were evaluated in the Fra-2 transgenic (Tg) mouse model. We considered a first group of 16 untreated mice, a second group of 15 mice receiving a single dose of anti-CD20 monoclonal antibody (mAb), and a third group of 8 mice receiving CD19-targeted CAR-T cells in combination with anti-CD20 monoclonal antibody.
Background: Activins are novel therapeutic targets in pulmonary arterial hypertension (PAH). We therefore studied whether key members of the activin pathway could be used as PAH biomarkers.
Methods: Serum levels of activin A, activin B, α-subunit of inhibin A and B proteins, and the antagonists follistatin and follistatin-like 3 (FSTL3) were measured in controls and in patients with newly diagnosed idiopathic, heritable, or anorexigen-associated PAH (n=80) at baseline and 3 to 4 months after treatment initiation.
Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels.
View Article and Find Full Text PDFInhibitors of soluble epoxide hydrolase (sEH), which catalyzes the hydrolysis of various natural epoxides to their corresponding diols, present an opportunity for developing oral drugs for a range of human cardiovascular and inflammatory diseases, including, among others, diabetes and neuropathic pain. However, some evidence suggests that their administration may precipitate the development of pulmonary hypertension (PH). We thus evaluated the impact of chronic oral administration of the sEH inhibitor TPPU (N-[1-(1-Oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea) on hemodynamics, pulmonary vascular reactivity, and remodeling, as well as on right ventricular (RV) dimension and function at baseline and in the Sugen (SU5416) + hypoxia (SuHx) rat model of severe PH.
View Article and Find Full Text PDFBackground: We studied the ability of the nonsteroidal MR (mineralocorticoid receptor) antagonist finerenone to attenuate vascular remodeling and pulmonary hypertension using two complementary preclinical models (the monocrotaline and sugen/hypoxia rat models) of severe pulmonary hypertension.
Methods: We first examined the distribution pattern of MR in the lungs of patients with pulmonary arterial hypertension (PAH) and in monocrotaline and sugen/hypoxia rat lungs. Subsequent studies were performed to explore the effect of MR inhibition on proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH.
Objective: Systemic sclerosis (SSc) is a debilitating autoimmune disease characterized by severe lung outcomes resulting in reduced life expectancy. Fra-2-transgenic mice offer the opportunity to decipher the relationships between the immune system and lung fibrosis. This study was undertaken to investigate whether the Fra-2-transgenic mouse lung phenotype may result from an imbalance between the effector and regulatory arms in the CD4+ T cell compartment.
View Article and Find Full Text PDF