Publications by authors named "Ottavia Zoboli"

Fluorescence fingerprinting is a technique to uniquely characterize water samples based on their distinct composition of dissolved organic matter (DOM) measured via 3D fluorescence spectroscopy. It is an effective tool for monitoring the chemical composition of various water systems. This study examines a river affected by several municipal and industrial wastewater treatment plant (WWTP) effluents and aims to source-tracing them via fluorescence fingerprints based on parallel factor analysis (PARAFAC) components.

View Article and Find Full Text PDF

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are a widespread group of organic contaminants whose presence in water bodies is cause of severe concern. With few exceptions, the majority of PAHs is hydrophobic, presents a high adsorption affinity, and is thus primarily transported within river systems during high-flow events together with suspended particulate matter (SPM). Evidence exists of analytical challenges related to the incomplete extraction of PAHs adsorbed to solids and thus to a potential negative bias in the chemical analysis of PAHs in bulk water samples with high SPM content.

View Article and Find Full Text PDF

The amounts and pathways of reactive nitrogen (Nr) losses in Austria into the surface water, soil, and atmosphere were determined under four climate change scenarios for the period 2041-2070. Two nutrient models were used to undertake the analysis at two different scales. Firstly, a semi-empirical, conceptual model (MONERIS) was setup for Austria to calculate the overall annual Nr surpluses, categorise flows of Nr, and identify regional hotspots of Nr losses.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzes regional N budgets, focusing on agricultural production, consumption, and N emissions across Austria, using material flow analysis to identify losses and nitrogen use efficiencies (NUE).
  • * Findings show significant regional disparities: alpine regions have low N inputs and inefficient NUE, while lowland areas exhibit higher N efficiency but face groundwater nitrate issues, reflecting the complex interplay between production systems and environmental factors.
View Article and Find Full Text PDF

Shallow lakes provide a multitude of ecosystem functions, but they are particularly vulnerable to natural and anthropogenic disturbances. Understanding the driving factors determining the fate and spatial distribution of nutrients and pollutants in such systems is fundamental to assess the impact of ongoing or future external pressures endangering their ecological integrity. This study investigates the fate of trace contaminants transported into the large shallow Lake Neusiedl, including contaminants representative of different patterns of sources and emission pathways and of environmental behavior, namely metals, pharmaceuticals, an artificial sweetener and perfluoroalkyl substances.

View Article and Find Full Text PDF

Fluorescence spectroscopy has numerous applications to characterize natural and human-influenced water bodies regarding dissolved organic matter (DOM) and contamination. Analyzing samples in a timely manner is crucial to gaining valid and reproducible excitation-emission matrices (EEM) but often difficult, specifically in transnational projects with long transport distances. In this study, eight samples of different water sources (tap water, differently polluted rivers, and wastewater treatment plant (WWTP) effluents) were stored under standardized conditions for 59 days and analyzed regularly.

View Article and Find Full Text PDF

Fluorescence spectroscopy has become a widely used technique to characterize dissolved organic matter (DOM) and organic hazardous micro-pollutants in natural and human-influenced water bodies. Especially in rivers highly impacted by municipal and industrial wastewater treatment plants' effluents, the fluorescence signal at low-flow is mainly dominated by these discharges. At river high-flow, their influence decreases due to dilution effects, and at the same time, other compounds of DOM, stemming from diffuse inputs, can increase or even dominate.

View Article and Find Full Text PDF

Surface water pollution with poly- and perfluorinated compounds (PFAS) is a well-recognized problem, but knowledge about contribution of different emission pathways, especially diffuse ones, is very limited. This study investigates the potential of the pathway oriented MoRE model in shedding light on the relevance of different emission pathways on regional scale and in predicting concentrations and loads in unmonitored rivers. Modelling was supported with a tailor-made monitoring programme aimed to fill gaps on PFAS concentration in different environmental compartments.

View Article and Find Full Text PDF

Within the new policy framework shaped by the EU Green Deal and the Circular Economy Action Plans, the field of wastewater and sludge treatment in Europe is subject to high expectations and new challenges related to mitigation of greenhouse gas emissions, micropollutant removal and resource recovery. With respect to phosphorus recovery, several technologies and processes have been thoroughly investigated. Nevertheless, a systemic and detailed understanding of the existing infrastructure and of the related environmental and economic implications is missing.

View Article and Find Full Text PDF

The identification of critical source areas (CSAs) is a key element in a cost-effective mitigation of diffuse emissions of phosphorus from agricultural soils into surface waters. One of the challenges related to CSAs is how to couple complex, data-intensive fate and transport models with easy-to-use information on field level for management purposes at the scale of large watersheds. To fill such a gap and create a bridge between the two tasks, this study puts forward the new Particulate PhozzyLogic Index (PPLI) based on the innovative combination of the results of a complex watershed model (in this case the PhosFate model) with fuzzy logic.

View Article and Find Full Text PDF

The release of micropollutants in surface water depends on different sources and on different pathways. Through substance flow analysis, this study estimates the annual load of two pharmaceuticals (carbamazepine and sulfamethoxazole) in a catchment area, due to different emission pathways: wastewater treatment plant effluent, combined sewer overflows, and runoff from sludge and manure amended soil. It emerged that wastewater treatment plant effluent is the main emission pathway for carbamazepine (98.

View Article and Find Full Text PDF

Occurrence and concentration of a broad spectrum of micropollutants are investigated in Austrian river catchments, namely polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organotin compounds, perfluoroalkyl acids (PFAAs) and metals. The parallel analysis across multiple environmental and engineered compartments sheds light on the ratio of dissolved and particulate transport and on differences in concentration levels between point and diffuse emission pathways. It is found that some PAHs and organotins are present in rivers, groundwater and bulk deposition at higher concentrations than in municipal wastewater effluents.

View Article and Find Full Text PDF

The tremendous increase in resource consumption over the past century and the environmental challenges it entails has spurred discussions for a shift from a linear to a circular resource use. However, to date most resource studies are restricted to one material or a single sector or process. In this work, a coupled material flow analysis taking the national phosphorus (P) and nitrogen (N) system of Austria as an example for two closely connected resource systems is conducted.

View Article and Find Full Text PDF

There is increasing evidence of water temperature being a key controlling factor of stream ecosystem metabolism. Although the focus of research currently lies on carbon emissions from fluvial networks and their potential role as positive climate feedback, it is also important to estimate the risk of eutrophication streams will be exposed to in the future. In this work, a methodological approach is developed to create a scientific basis for such assessment and is applied to two Austrian lowland rivers with significantly different characteristics.

View Article and Find Full Text PDF

Material flow analysis is a tool that is increasingly used as a foundation for resource management and environmental protection. This tool is primarily applied in a static manner to individual years, ignoring the impact of time on the material budgets. In this study, a detailed multiyear model of the Austrian phosphorus budget covering the period 1990-2011 was built to investigate its behavior over time and test the hypothesis that a multiyear approach can also contribute to the improvement of static budgets.

View Article and Find Full Text PDF

Protecting water bodies from eutrophication, ensuring long-term food security and shifting to a circular economy represent compelling objectives to phosphorus management strategies. This study determines how and to which extent the management of phosphorus in Austria can be optimized. A detailed national model, obtained for the year 2013 through Material Flow Analysis, represents the reference situation.

View Article and Find Full Text PDF

Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads.

View Article and Find Full Text PDF