Flash column chromatographic fractionation of tree of heaven () stem and trunk bark extracts, guided by thin-layer chromatography (TLC)- assay and TLC-heated electrospray high-resolution tandem mass spectrometry (HESI-HRMS/MS), lead to the isolation of six known compounds: (9,11)-13-hydroxy-9,11-octadecadienoic acid (13-HODE, ), (10,12)-9-hydroxy-10,12-octadecadienoic acid (9-HODE, ), hexadecanedioic acid (thapsic acid, ), 16-hydroxyhexadecanoic acid (juniperic acid, ), 16-feruloyloxypalmitic acid (alpinagalanate, ), and canthin-6-one (). Their structures were elucidated by HESI-HRMS/MS and one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. This is the first study identifying - in tree.
View Article and Find Full Text PDFEffective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFHigh-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFUrea synthesis is an irreversible, essential for maintenance of health and life, and highly regulated liver function with a very high capacity for production of the end-product urea-nitrogen. The set-point of urea synthesis in relation to its overall substrate, the prevailing blood concentration of L-α-amino acids, contributes to determine whole-body nitrogen balance and the size and composition of the plasma free amino acid pool. Ammonia is definitively eliminated from the body by urea synthesis.
View Article and Find Full Text PDFElevated arterial ammonia is associated with several complications of liver disease as it predicts mortality for in-patients and decompensation, hospitalization and death in out-patients with cirrhosis. In this review, our aim was to estimate how the individual organs contribute to arterial ammonia based on published data from human studies. The brain removes ammonia from arterial blood in a concentration-dependent fashion.
View Article and Find Full Text PDFBackground: Ammonia is implicated in hepatic encephalopathy (HE) and prognostic in cirrhosis. Venous ammonia concentration, yielding similar correlation with HE grades as arterial, has become the preferred practise but comparative data are limited.
Aim: To quantify effect of sampling site on ammonia concentration in healthy persons and patients with cirrhosis.
The biological and clinical relevance of gene fusions in melanoma is unknown. Reports and preclinical data have suggested that tumor cells with specific rearrangements such as RAF1 gene fusions could be therapeutically targeted. To investigate the relevance of targeted therapy in patients with melanoma harboring RAF1 gene fusions, we reviewed records of 1268 melanoma patients with targeted sequencing data at the Dana-Farber Cancer Institute.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDFThis Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.
View Article and Find Full Text PDFThis Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ^{'}ℓ^{'}(ℓ,ℓ^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined.
View Article and Find Full Text PDFBackground: The combination of ipilimumab and nivolumab is a highly effective treatment for metastatic cutaneous melanoma. However, immune-related adverse events (irAEs) are common, often necessitating treatment interruption and the use of immunosuppressive agents. There is no data on the impact of resuming nivolumab on survival following recovery from the irAE and completion of immunosuppressive treatment.
View Article and Find Full Text PDFBackground & Aims: Wilson disease (WD) is caused by accumulation of copper primarily in the liver and brain. During maintenance therapy of WD with D-penicillamine, current guidelines recommend on-treatment ranges of urinary copper excretion (UCE) of 200-500 μg/24 h and serum non-ceruloplasmin-bound copper (NCC) of 50-150 μg/L. We compared NCC (measured by two novel assays) and UCE from patients with clinically stable WD on D-penicillamine therapy with these recommendations.
View Article and Find Full Text PDFStatistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.
View Article and Find Full Text PDFPersonalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens.
View Article and Find Full Text PDFThe NCCN Guidelines for Cutaneous Melanoma (termed Melanoma: Cutaneous) provide multidisciplinary recommendations for diagnostic workup, staging, and treatment of patients. These NCCN Guidelines Insights focus on the update to neoadjuvant systemic therapy options and summarize the new clinical data evaluated by the NCCN panel for the recommended therapies in Version 2.2024 of the NCCN Guidelines for Cutaneous Melanoma.
View Article and Find Full Text PDFA combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: bb[over ¯]bb[over ¯], bb[over ¯]τ^{+}τ^{-}, and bb[over ¯]γγ. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV.
View Article and Find Full Text PDFHiggsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is O(1 GeV). This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from 0.
View Article and Find Full Text PDFAngular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC.
View Article and Find Full Text PDFThe majority of patients who are diagnosed with cutaneous melanoma are candidates for surgical resection and thus curable from their disease. However, the risk for a recurrence is high for many patients, including those with lymph node-negative melanoma, thus necessitating additional therapies beyond surgery. With the advent of anti-programmed cell death protein 1 (PD-1)-based immunotherapies, which are vastly more effective compared to previous standard-of-care treatments in the advanced setting, the landscape of adjuvant therapy has fundamentally changed in recent years.
View Article and Find Full Text PDFThis Letter presents the first study of Higgs boson production in association with a vector boson (V=W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at sqrt[s]=13 TeV and corresponding to an integrated luminosity of 137 fb^{-1}. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into bb[over ¯].
View Article and Find Full Text PDF