The control of the biological rhythms begins with the activation of photo- and thermosensitive cells located in various organs of the fish such as brain, eye, and skin, but a central clock is still to be identified in teleosts. Thermal changes are stressors which increase cortisol and affect the rhythm of other hormones such as melatonin and growth hormone (GH), in both endo- and ectothermic organisms. Our aim was to investigate how temperature (23°C for 6 days) lower than the optimal (28°C) modulates expression of several gene pathways including growth hormone () and its receptors (), insulin-like growth factor1 () and its receptors (), cortisol and its receptor (), the limiting enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, ) and melatonin receptors (), as well as their relationship with clock genes in in early light and early dark phases of the day.
View Article and Find Full Text PDFEstuarine osmoconformes rely on their ability to perform tissue and cell water regulation to cope with daily osmotic challenges that occur in the estuary. In addition, these animals currently must deal with pollutants present in the estuarine environment, which can disturb their capacity of water regulation. We collected the mangrove oyster Crassostrea rhizophorae in two tropical estuaries in the Northeast region of Brazil with different degrees of human interference: the Paraíba Estuary (impacted) and the Mamanguape Estuary (preserved).
View Article and Find Full Text PDF